Modularized batch production of 12-inch transition metal dichalcogenides by local element supply

薄脆饼 材料科学 半导体 纳米技术 单层 光电子学
作者
Guodong Xue,Xin Sui,Peng Yin,Ziqi Zhou,Xiuzhen Li,Yang Cheng,Quanlin Guo,Shuai Zhang,Yao Wen,Yonggang Zuo,Chong Zhao,Muhong Wu,Peng Gao,Qunyang Li,Jun He,Li Wang,Guangyu Zhang,Can Liu,Kaihui Liu
出处
期刊:Science Bulletin [Elsevier]
卷期号:68 (14): 1514-1521 被引量:28
标识
DOI:10.1016/j.scib.2023.06.037
摘要

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are regarded as pivotal semiconductor candidates for next-generation devices due to their atomic-scale thickness, high carrier mobility and ultrafast charge transfer. In analog to the traditional semiconductor industry, batch production of wafer-scale TMDs is the prerequisite to proceeding with their integrated circuits evolution. However, the production capacity of TMD wafers is typically constrained to a single and small piece per batch (mainly ranging from 2 to 4 inches), due to the stringent conditions required for effective mass transport of multiple precursors during growth. Here we developed a modularized growth strategy for batch production of wafer-scale TMDs, enabling the fabrication of 2-inch wafers (15 pieces per batch) up to a record-large size 12-inch wafers (3 pieces per batch). Each module, comprising a self-sufficient local precursor supply unit for robust individual TMD wafer growth, is vertically stacked with others to form an integrated array and thus a batch growth. Comprehensive characterization techniques, including optical spectroscopy, electron microscopy, and transport measurements unambiguously illustrate the high-crystallinity and the large-area uniformity of as-prepared monolayer films. Furthermore, these modularized units demonstrate versatility by enabling the conversion of as-produced wafer-scale MoS2 into various structures, such as Janus structures of MoSSe, alloy compounds of MoS2(1-x)Se2x, and in-plane heterostructures of MoS2-MoSe2. This methodology showcases high-quality and high-yield wafer output and potentially enables the seamless transition from lab-scale to industrial-scale 2D semiconductor complementary to silicon technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
香蕉觅云应助zfzf0422采纳,获得10
2秒前
3秒前
3秒前
李健应助爱听歌的向日葵采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得80
4秒前
所所应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得30
5秒前
婷婷发布了新的文献求助10
5秒前
zzt完成签到,获得积分10
7秒前
张小汉发布了新的文献求助30
8秒前
二十四发布了新的文献求助10
8秒前
赘婿应助junzilan采纳,获得10
8秒前
FashionBoy应助勤恳的雨文采纳,获得10
8秒前
aaa完成签到,获得积分10
9秒前
10秒前
11111完成签到,获得积分20
11秒前
仔wang完成签到,获得积分10
11秒前
13秒前
忘羡222发布了新的文献求助20
13秒前
13秒前
温暖涫完成签到,获得积分10
15秒前
11111发布了新的文献求助10
15秒前
健忘的牛排完成签到,获得积分10
16秒前
wmmm完成签到,获得积分10
16秒前
Akim应助爱吃泡芙采纳,获得10
16秒前
老迟到的书雁完成签到 ,获得积分10
16秒前
16秒前
正经俠发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824