Classification of tumor in one single ultrasound image via a novel multi-view learning strategy

计算机科学 人工智能 保险丝(电气) 特征(语言学) 模式识别(心理学) 成对比较 任务(项目管理) 乳腺超声检查 深度学习 特征提取 机器学习 计算机视觉 乳腺癌 乳腺摄影术 癌症 哲学 经济 工程类 管理 内科学 电气工程 医学 语言学
作者
Yaozhong Luo,Qinghua Huang,Longzhong Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:143: 109776-109776 被引量:41
标识
DOI:10.1016/j.patcog.2023.109776
摘要

Computer-aided diagnosis (CAD) technology has been widely used in the early diagnosis of breast cancer. Nowadays, most of the existing breast ultrasound classification methods need to crop a tumor-centered image (TCI) on each image as the input of the system. These methods ignore the fact that the tumor as well as its surrounding tissues can actually be viewed from multiple aspects, and it is difficult to extract multi-resolution information applying only a single view image. In addition, the current methods do not effectively extract fine-grained features, and subtle details play an important role in breast classification. In our research, we propose a novel strategy to generate multi-resolution TCIs in a single ultrasound image, resulting in a multi-data-input learning task. Hence, a conventional single image based learning task is converted into a multi-view learning task, and an improved combined style fusion method suitable for a deep network is proposed, which integrates the advantage of the decision-based and feature-based methods to fuse the information of different views. At the same time, we first attempt to introduce the fine-grained classification method into breast classifications and capture the pairwise correlation between feature channels at each position to extract subtle information. The comparative experimental results show that our method can effectively improve the classification performance and achieves the best results in five metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
吼吼应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
吼吼应助科研通管家采纳,获得10
刚刚
寻道图强应助科研通管家采纳,获得50
刚刚
ding应助科研通管家采纳,获得10
刚刚
Verity应助科研通管家采纳,获得20
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
吼吼应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
Junning应助科研通管家采纳,获得100
1秒前
w1kend发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
ssuoi完成签到,获得积分10
1秒前
思源应助luo采纳,获得10
1秒前
佳雯发布了新的文献求助10
1秒前
slz发布了新的文献求助10
2秒前
十二码前的沉思完成签到,获得积分10
2秒前
4秒前
闫素肃发布了新的文献求助10
4秒前
Nofear发布了新的文献求助10
5秒前
7秒前
徐新雨发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
隐形曼青应助淡定鞋垫采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779