亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of tumor in one single ultrasound image via a novel multi-view learning strategy

计算机科学 人工智能 保险丝(电气) 特征(语言学) 模式识别(心理学) 成对比较 任务(项目管理) 乳腺超声检查 深度学习 特征提取 机器学习 计算机视觉 乳腺癌 乳腺摄影术 癌症 哲学 经济 工程类 管理 内科学 电气工程 医学 语言学
作者
Yaozhong Luo,Qinghua Huang,Longzhong Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:143: 109776-109776 被引量:41
标识
DOI:10.1016/j.patcog.2023.109776
摘要

Computer-aided diagnosis (CAD) technology has been widely used in the early diagnosis of breast cancer. Nowadays, most of the existing breast ultrasound classification methods need to crop a tumor-centered image (TCI) on each image as the input of the system. These methods ignore the fact that the tumor as well as its surrounding tissues can actually be viewed from multiple aspects, and it is difficult to extract multi-resolution information applying only a single view image. In addition, the current methods do not effectively extract fine-grained features, and subtle details play an important role in breast classification. In our research, we propose a novel strategy to generate multi-resolution TCIs in a single ultrasound image, resulting in a multi-data-input learning task. Hence, a conventional single image based learning task is converted into a multi-view learning task, and an improved combined style fusion method suitable for a deep network is proposed, which integrates the advantage of the decision-based and feature-based methods to fuse the information of different views. At the same time, we first attempt to introduce the fine-grained classification method into breast classifications and capture the pairwise correlation between feature channels at each position to extract subtle information. The comparative experimental results show that our method can effectively improve the classification performance and achieves the best results in five metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫叶完成签到 ,获得积分10
2秒前
奔跑石小猛完成签到,获得积分10
2秒前
纸鹤发布了新的文献求助10
5秒前
liz完成签到,获得积分10
15秒前
小花小宝和阿飞完成签到 ,获得积分10
23秒前
26秒前
科研通AI6应助盛夏如花采纳,获得10
27秒前
33秒前
38秒前
52秒前
55155255完成签到,获得积分10
53秒前
慕青应助明亮紫易采纳,获得10
55秒前
纸鹤发布了新的文献求助10
55秒前
吱吱吱吱发布了新的文献求助10
56秒前
小橘子不小完成签到,获得积分10
59秒前
Ruby完成签到,获得积分10
59秒前
1分钟前
zhuyi_6695发布了新的文献求助10
1分钟前
kei完成签到 ,获得积分10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
勤恳依霜发布了新的文献求助10
1分钟前
hhhhhh应助科研通管家采纳,获得50
1分钟前
xiaohardy完成签到,获得积分10
1分钟前
勤恳依霜完成签到,获得积分10
1分钟前
英俊的铭应助Jack采纳,获得10
1分钟前
盛夏如花发布了新的文献求助10
1分钟前
budingman发布了新的文献求助10
1分钟前
Chen完成签到 ,获得积分10
1分钟前
健壮傲之完成签到 ,获得积分10
1分钟前
纸鹤发布了新的文献求助80
1分钟前
2分钟前
sunrise完成签到,获得积分10
2分钟前
汉堡包应助科研帽采纳,获得10
2分钟前
孙颖完成签到 ,获得积分10
2分钟前
Jack发布了新的文献求助10
2分钟前
2分钟前
Always发布了新的文献求助10
2分钟前
Steve完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644525
求助须知:如何正确求助?哪些是违规求助? 4764376
关于积分的说明 15025234
捐赠科研通 4802924
什么是DOI,文献DOI怎么找? 2567703
邀请新用户注册赠送积分活动 1525363
关于科研通互助平台的介绍 1484826