Classification of tumor in one single ultrasound image via a novel multi-view learning strategy

计算机科学 人工智能 保险丝(电气) 特征(语言学) 模式识别(心理学) 成对比较 任务(项目管理) 乳腺超声检查 深度学习 特征提取 机器学习 计算机视觉 乳腺癌 乳腺摄影术 癌症 哲学 经济 工程类 管理 内科学 电气工程 医学 语言学
作者
Yaozhong Luo,Qinghua Huang,Longzhong Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:143: 109776-109776 被引量:41
标识
DOI:10.1016/j.patcog.2023.109776
摘要

Computer-aided diagnosis (CAD) technology has been widely used in the early diagnosis of breast cancer. Nowadays, most of the existing breast ultrasound classification methods need to crop a tumor-centered image (TCI) on each image as the input of the system. These methods ignore the fact that the tumor as well as its surrounding tissues can actually be viewed from multiple aspects, and it is difficult to extract multi-resolution information applying only a single view image. In addition, the current methods do not effectively extract fine-grained features, and subtle details play an important role in breast classification. In our research, we propose a novel strategy to generate multi-resolution TCIs in a single ultrasound image, resulting in a multi-data-input learning task. Hence, a conventional single image based learning task is converted into a multi-view learning task, and an improved combined style fusion method suitable for a deep network is proposed, which integrates the advantage of the decision-based and feature-based methods to fuse the information of different views. At the same time, we first attempt to introduce the fine-grained classification method into breast classifications and capture the pairwise correlation between feature channels at each position to extract subtle information. The comparative experimental results show that our method can effectively improve the classification performance and achieves the best results in five metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
Rubyii发布了新的文献求助10
刚刚
zzzzzzz完成签到 ,获得积分10
1秒前
1秒前
1秒前
PORCO完成签到,获得积分10
2秒前
浮游应助Zac采纳,获得10
3秒前
4秒前
英姑应助西子采纳,获得10
5秒前
5秒前
yaoyao发布了新的文献求助10
6秒前
6秒前
yijibaoli完成签到 ,获得积分10
7秒前
7秒前
及禾发布了新的文献求助10
7秒前
研友_n2Qv2L发布了新的文献求助10
7秒前
8秒前
7788完成签到,获得积分10
9秒前
FyD关闭了FyD文献求助
10秒前
10秒前
wch发布了新的文献求助10
10秒前
11秒前
瞿绝悟发布了新的文献求助10
11秒前
沉静飞雪完成签到,获得积分10
11秒前
11秒前
聂珩发布了新的文献求助10
11秒前
11秒前
寒冷的书白完成签到,获得积分20
12秒前
橙子发布了新的文献求助10
13秒前
Lucas应助李里哩采纳,获得10
13秒前
腼腆的初蓝完成签到,获得积分10
14秒前
15秒前
wz关注了科研通微信公众号
15秒前
狐妖完成签到,获得积分10
16秒前
wwwwww发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
辛勤秋双发布了新的文献求助20
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082