Classification of tumor in one single ultrasound image via a novel multi-view learning strategy

计算机科学 人工智能 保险丝(电气) 特征(语言学) 模式识别(心理学) 成对比较 任务(项目管理) 乳腺超声检查 深度学习 特征提取 机器学习 计算机视觉 乳腺癌 乳腺摄影术 癌症 医学 哲学 语言学 管理 内科学 电气工程 经济 工程类
作者
Yaozhong Luo,Qinghua Huang,Longzhong Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:143: 109776-109776 被引量:35
标识
DOI:10.1016/j.patcog.2023.109776
摘要

Computer-aided diagnosis (CAD) technology has been widely used in the early diagnosis of breast cancer. Nowadays, most of the existing breast ultrasound classification methods need to crop a tumor-centered image (TCI) on each image as the input of the system. These methods ignore the fact that the tumor as well as its surrounding tissues can actually be viewed from multiple aspects, and it is difficult to extract multi-resolution information applying only a single view image. In addition, the current methods do not effectively extract fine-grained features, and subtle details play an important role in breast classification. In our research, we propose a novel strategy to generate multi-resolution TCIs in a single ultrasound image, resulting in a multi-data-input learning task. Hence, a conventional single image based learning task is converted into a multi-view learning task, and an improved combined style fusion method suitable for a deep network is proposed, which integrates the advantage of the decision-based and feature-based methods to fuse the information of different views. At the same time, we first attempt to introduce the fine-grained classification method into breast classifications and capture the pairwise correlation between feature channels at each position to extract subtle information. The comparative experimental results show that our method can effectively improve the classification performance and achieves the best results in five metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助wysky37采纳,获得10
1秒前
大个应助牛马日常采纳,获得10
2秒前
2秒前
3秒前
tanmeng77发布了新的文献求助10
3秒前
YYJ发布了新的文献求助10
3秒前
3秒前
空白完成签到 ,获得积分10
4秒前
bingchem发布了新的文献求助30
4秒前
5秒前
JINJX完成签到,获得积分10
5秒前
5秒前
5秒前
Arthur Zhu发布了新的文献求助10
5秒前
岁月静好完成签到,获得积分10
6秒前
青柠发布了新的文献求助20
7秒前
7秒前
友好的妙松完成签到 ,获得积分10
7秒前
7秒前
7秒前
上官若男应助陈11采纳,获得50
8秒前
8秒前
kaio发布了新的文献求助10
8秒前
111完成签到,获得积分10
8秒前
kang完成签到,获得积分10
9秒前
科研通AI5应助Guapas采纳,获得10
9秒前
9秒前
donk发布了新的文献求助10
9秒前
墨冉完成签到,获得积分20
10秒前
xiangjunling完成签到,获得积分10
10秒前
钠离子发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
田様应助dy__采纳,获得10
12秒前
YOLO完成签到,获得积分10
12秒前
12秒前
烟花应助lsy采纳,获得10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734958
求助须知:如何正确求助?哪些是违规求助? 3278816
关于积分的说明 10011931
捐赠科研通 2995493
什么是DOI,文献DOI怎么找? 1643460
邀请新用户注册赠送积分活动 781225
科研通“疑难数据库(出版商)”最低求助积分说明 749320