亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of tumor in one single ultrasound image via a novel multi-view learning strategy

计算机科学 人工智能 保险丝(电气) 特征(语言学) 模式识别(心理学) 成对比较 任务(项目管理) 乳腺超声检查 深度学习 特征提取 机器学习 计算机视觉 乳腺癌 乳腺摄影术 癌症 哲学 经济 工程类 管理 内科学 电气工程 医学 语言学
作者
Yaozhong Luo,Qinghua Huang,Longzhong Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:143: 109776-109776 被引量:41
标识
DOI:10.1016/j.patcog.2023.109776
摘要

Computer-aided diagnosis (CAD) technology has been widely used in the early diagnosis of breast cancer. Nowadays, most of the existing breast ultrasound classification methods need to crop a tumor-centered image (TCI) on each image as the input of the system. These methods ignore the fact that the tumor as well as its surrounding tissues can actually be viewed from multiple aspects, and it is difficult to extract multi-resolution information applying only a single view image. In addition, the current methods do not effectively extract fine-grained features, and subtle details play an important role in breast classification. In our research, we propose a novel strategy to generate multi-resolution TCIs in a single ultrasound image, resulting in a multi-data-input learning task. Hence, a conventional single image based learning task is converted into a multi-view learning task, and an improved combined style fusion method suitable for a deep network is proposed, which integrates the advantage of the decision-based and feature-based methods to fuse the information of different views. At the same time, we first attempt to introduce the fine-grained classification method into breast classifications and capture the pairwise correlation between feature channels at each position to extract subtle information. The comparative experimental results show that our method can effectively improve the classification performance and achieves the best results in five metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助务实的翠风采纳,获得10
6秒前
科研通AI6.1应助任性学姐采纳,获得10
13秒前
Akim应助qc采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
44秒前
zzz关闭了zzz文献求助
44秒前
朴实的河马完成签到,获得积分10
44秒前
任性学姐发布了新的文献求助10
53秒前
耶格尔完成签到 ,获得积分10
55秒前
weibo完成签到,获得积分10
1分钟前
光亮的万天完成签到 ,获得积分10
1分钟前
轻松戎发布了新的文献求助10
1分钟前
迷人的焦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
英俊的铭应助白山采纳,获得10
1分钟前
桐桐应助轻松戎采纳,获得10
1分钟前
大林完成签到,获得积分10
1分钟前
yb完成签到,获得积分10
1分钟前
安静含卉发布了新的文献求助30
1分钟前
1分钟前
充电宝应助任性学姐采纳,获得10
1分钟前
萝卜发布了新的文献求助10
1分钟前
luan完成签到,获得积分10
1分钟前
移动马桶完成签到 ,获得积分10
1分钟前
萝卜完成签到,获得积分10
1分钟前
共享精神应助安静含卉采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
任性学姐发布了新的文献求助10
2分钟前
科研通AI6.1应助任性学姐采纳,获得10
2分钟前
2分钟前
2分钟前
xzccc发布了新的文献求助10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
任性学姐发布了新的文献求助10
3分钟前
平淡剑鬼完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739408
求助须知:如何正确求助?哪些是违规求助? 5386143
关于积分的说明 15339719
捐赠科研通 4881969
什么是DOI,文献DOI怎么找? 2624052
邀请新用户注册赠送积分活动 1572745
关于科研通互助平台的介绍 1529540