PLA-LiDAR: Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle

激光雷达 点云 计算机科学 欺骗攻击 目标检测 计算机视觉 人工智能 对象(语法) 遥感 机器人 实时计算 利用 计算机安全 模式识别(心理学) 地理
作者
Zizhi Jin,Xiaoyu Ji,Yushi Cheng,Bo Yang,Chen Yan,Wenyuan Xu
标识
DOI:10.1109/sp46215.2023.10179458
摘要

Autonomous vehicles and robots increasingly exploit LiDAR-based 3D object detection systems to detect obstacles in environment. Correct detection and classification are important to ensure safe driving. Though existing work has demonstrated the feasibility of manipulating point clouds to spoof 3D object detectors, most of the attempts are conducted digitally. In this paper, we investigate the possibility of physically fooling LiDAR-based 3D object detection by injecting adversarial point clouds using lasers. First, we develop a laser transceiver that can inject up to 4200 points, which is 20 times more than prior work, and can measure the scanning cycle of victim LiDARs to schedule the spoofing laser signals. By designing a control signal method that converts the coordinates of point clouds to control signals and an adversarial point cloud optimization method with physical constraints of LiDARs and attack capabilities, we manage to inject spoofing point cloud with desired point cloud shapes into the victim LiDAR physically. We can launch four types of attacks, i.e., naive hiding, record-based creating, optimization-based hiding, and optimization-based creating. Extensive experiments demonstrate the effectiveness of our attacks against two commercial LiDAR and three detectors. We also discuss defense strategies at the sensor and AV system levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
古木完成签到,获得积分20
刚刚
尉迟希望应助datiancaihaha采纳,获得10
1秒前
调皮的延恶完成签到,获得积分10
1秒前
1秒前
落寞的采白完成签到,获得积分20
1秒前
爆米花应助xiayil采纳,获得10
1秒前
2秒前
香蕉觅云应助WuYiHHH采纳,获得10
2秒前
冷傲的荧荧完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
泡泡发布了新的文献求助10
3秒前
HRB完成签到,获得积分10
3秒前
3秒前
万能图书馆应助枫叶采纳,获得10
3秒前
XiaChenfeng完成签到,获得积分20
5秒前
5秒前
tudouzi发布了新的文献求助10
5秒前
5秒前
CodeCraft应助薛定谔的猫采纳,获得10
6秒前
狐桃桃完成签到,获得积分10
6秒前
6秒前
6秒前
小迷糊发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
非也的非也完成签到,获得积分20
7秒前
无梦亦无影完成签到 ,获得积分10
7秒前
俏皮访彤发布了新的文献求助10
7秒前
科研通AI2S应助gx采纳,获得10
8秒前
8秒前
8秒前
进步发布了新的文献求助10
8秒前
朱朱发布了新的文献求助10
8秒前
8秒前
8秒前
shuyan完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429722
求助须知:如何正确求助?哪些是违规求助? 4543141
关于积分的说明 14185524
捐赠科研通 4461208
什么是DOI,文献DOI怎么找? 2446025
邀请新用户注册赠送积分活动 1437248
关于科研通互助平台的介绍 1414265