Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT

医学 非典型腺瘤性增生 腺癌 放射科 磨玻璃样改变 淋巴结 病理 癌症 内科学
作者
Kang Qi,Kexin Wang,Xiaoying Wang,Yudong Zhang,Gang Lin,Xining Zhang,Lei Zhu,Weiming Huang,Jingyun Wu,Kai Zhao,Lei Zhu,Jian Li,Shouxin Zhang
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:: 1-12 被引量:2
标识
DOI:10.2214/ajr.23.29674
摘要

BACKGROUND. Pure ground-glass nodules (pGGNs) on chest CT representing invasive adenocarcinoma (IAC) warrant lobectomy with lymph node resection. For pGGNs representing other entities, close follow-up or sublobar resection without node dissection may be appropriate. OBJECTIVE. To develop and validate an automated deep learning model for differentiation of pGGNs on chest CT representing IAC from those representing atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), or minimally invasive adenocarcinoma (MIA). METHODS. This retrospective study included 402 patients (mean age, 53.2 years; 119 men, 283 women) with a total of 448 pGGNs on noncontrast chest CT that underwent resection from January 2019 to June 2022 and were histologically diagnosed as AAH (n=29), AIS (n=83), MIA (n=235), or IAC (n=101). We developed Lung-PNet, a 3D deep learning model for automatic segmentation and classification (probability of IAC vs other entities) of pGGNs on CT. Nodules from January 2019 to December 2021 were randomly allocated to training (n=327) and internal test (n=82) sets; nodules from January 2022 to June 22 formed a holdout test set (n=39). Segmentation performance was assessed by Dice coefficients, using radiologists' manual segmentations as reference. Classification performance was assessed by AUCROC and AUC under precision-recall curve (AUCPR), and compared with that of four readers (three radiologists, one surgeon). Code is publicly available: https://github.com/Xiaodong-Zhang-PKUFH/Lung-PNet.git. RESULTS. In the holdout test set, Dice coefficients for segmentation of IACs and of other lesions were 0.860 and 0838, and AUCROC and AUCPR for classification as IAC were 0.911 and 0.842. At threshold probability of ≥ 50.0% for prediction of IAC, Lung-PNet had sensitivity, specificity, accuracy, and F1 score of 50.0%, 92.0%, 76.9%, and 60.9% in the holdout test set. Accuracy and F1 score (with p values vs Lung-PNet) were, in the holdout test set: reader 1, 51.3% (p=.02) and 48.7% (p=.008); reader 2, 79.5% (p=.75) and 75.0% (p=.10); reader 3, 66.7% (p=.35) and 68.3% (p<.001); reader 4, 71.8% (p=.48) and 42.1% (p=.18). CONCLUSION. Lung-PNet exhibited robust performance for segmenting and classifying (IAC vs other entities) pGGNs on chest CT. CLINICAL IMPACT. This automated deep learning tool may help guide selection of surgical strategies for pGNN management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
方法发布了新的文献求助10
2秒前
3秒前
赘婿应助www采纳,获得30
3秒前
Panda关注了科研通微信公众号
3秒前
4秒前
4秒前
zdd完成签到,获得积分10
5秒前
6秒前
寻找完成签到,获得积分20
6秒前
Xueyang发布了新的文献求助10
6秒前
Dusk完成签到,获得积分10
7秒前
1111应助lza采纳,获得10
7秒前
活力的荷花完成签到,获得积分20
7秒前
8秒前
bkagyin应助潇笑采纳,获得10
8秒前
Ava应助缥缈的人达采纳,获得10
8秒前
方法完成签到,获得积分20
9秒前
俏皮的诗蕾关注了科研通微信公众号
10秒前
清秀思卉完成签到,获得积分10
10秒前
一一完成签到,获得积分10
11秒前
11秒前
11秒前
iNk应助寻找采纳,获得20
11秒前
春雷应助hsialy采纳,获得10
11秒前
wyg117发布了新的文献求助10
12秒前
14秒前
李爱国应助jiabaoyu采纳,获得10
15秒前
憨憨医生发布了新的文献求助10
17秒前
17秒前
18秒前
超帅的念寒完成签到,获得积分10
18秒前
5297发布了新的文献求助10
18秒前
Bazinga完成签到,获得积分10
18秒前
tiantiantian发布了新的文献求助10
18秒前
20秒前
20秒前
曾经板栗完成签到 ,获得积分10
20秒前
潇笑发布了新的文献求助10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3685654
求助须知:如何正确求助?哪些是违规求助? 3236393
关于积分的说明 9825309
捐赠科研通 2948172
什么是DOI,文献DOI怎么找? 1616692
邀请新用户注册赠送积分活动 763773
科研通“疑难数据库(出版商)”最低求助积分说明 738060