碳纳米纤维
纳米纤维
纳米颗粒
材料科学
化学工程
静电纺丝
纳米技术
碳纤维
催化作用
多孔性
化学
碳纳米管
有机化学
复合材料
复合数
工程类
聚合物
作者
Xuan Li,Guodong Li,Chen Deng,Lingyan Jing,Chao Feng,Yan Kong,Xingxing Jiang,Weiliang Zhou,Xiaoyan Chai,Hengpan Yang,Qi Hu,Chuanxin He
标识
DOI:10.1007/s40843-023-2483-x
摘要
Synthesis of ultrafine Pt nanoparticles with high metal utilization is essential to achieve efficient oxygen reduction reaction (ORR) with a low mass loading of Pt; however, it remains challenging. Here, we propose a facile yet robust strategy to construct ultrafine Pt nanoparticles (∼3 nm) anchored on porous carbon nanofibers (PCNFs) via electrospinning. It is found that the porous architecture facilitates mass transport and active sites exposure, thereby providing highly accessible Pt sites. As a result, the synthesized Pt@PCNFs with low Pt loading (4.2 wt%) display excellent ORR activity with a mass activity of 41 and 51 A gPt−1 at 0.9 V in alkaline and acidic electrolytes, 8 times and 10 times that of the corresponding value for commercial Pt/C catalyst, respectively. More importantly, the strong metal-support interaction between Pt nanoparticles and N-doped carbon nanofibers, as well as carbon shell protection, significantly enhances the stability by suppressing the aggregation of Pt nanoparticles during ORR, and consequently the stability of Pt@PCNFs is much superior to that of the Pt/C benchmark in both alkaline and acid media at different temperatures. This work provides a facile approach to developing efficient and stable low-Pt-based electrocatalysts toward ORR.
科研通智能强力驱动
Strongly Powered by AbleSci AI