Signed distance field enhanced fully resolved CFD-DEM for simulation of granular flows involving multiphase fluids and irregularly shaped particles

计算流体力学 CFD-DEM公司 离散元法 机械 粒状材料 浸入边界法 多相流 计算科学 计算机科学 物理 几何学 经典力学 工程类 边界(拓扑) 数学 岩土工程 数学分析
作者
Zhengshou Lai,Jidong Zhao,Shiwei Zhao,Linchong Huang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:414: 116195-116195
标识
DOI:10.1016/j.cma.2023.116195
摘要

It is challenging to model granular particles with arbitrary shapes and related complications to fluid–particle interactions for granular flows which are widely encountered in nature and engineering. This paper presents an improved framework of the immersed boundary method (IBM)-based fully resolved computational fluid dynamics (CFD) and discrete element method (DEM), with an emphasis on irregular-shaped particles and the implications to particle–fluid interactions. The improved CFD-DEM framework is featured by two novel enhancements with signed distance field (SDF). First, an SDF-based formulation is employed to enable handling of granular particles with arbitrary shapes in DEM robustly and efficiently. Second, the IBM is modified to be consistent with SDF to fully resolve fluid–particle interactions in the presence of non-spherical particles. Such treatments leverage SDF as a generic interface to furnish a new SDF-CFD-DEM framework for universal modeling of arbitrarily shaped particles interacting with multiphase fluids with desired resolutions. Exemplified particle shape models include super-quadrics, spherical harmonics, polyhedron and level set, and new shape models can be flexibly developed by implementing the unified SDF-based shape interface. The proposed SDF-CFD-DEM is validated and showcased with examples including particle settling, drafting–kissing–tumbling, immersed granular collapse, and mudflow. The results demonstrate the good accuracy and robustness of the SDF-CFD-DEM and its potential for efficient computational modeling of multiphase granular flows involving granular particles with arbitrary shapes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
植绒发布了新的文献求助10
刚刚
1秒前
guanshujuan发布了新的文献求助10
1秒前
神经哇完成签到,获得积分10
1秒前
lalune完成签到,获得积分10
1秒前
1秒前
西红柿炒番茄应助牛肉面采纳,获得30
2秒前
3秒前
慕青应助伈X采纳,获得10
3秒前
4秒前
酷波er应助小小菜刀采纳,获得10
4秒前
小兔完成签到,获得积分10
4秒前
欢喜听枫完成签到,获得积分10
4秒前
fang发布了新的文献求助10
5秒前
Jasper应助3s采纳,获得10
6秒前
sweettroye完成签到,获得积分10
7秒前
善学以致用应助guanshujuan采纳,获得10
7秒前
8秒前
yuko完成签到,获得积分10
8秒前
8秒前
李博士发布了新的文献求助10
9秒前
领导范儿应助Hui_2023采纳,获得10
9秒前
夕荀发布了新的文献求助30
10秒前
欢呼的镜子完成签到,获得积分10
10秒前
10秒前
fan完成签到 ,获得积分10
11秒前
12秒前
北冥有鱼完成签到 ,获得积分10
13秒前
14秒前
ohhhh发布了新的文献求助10
15秒前
Lin_Yongqi发布了新的文献求助10
15秒前
小奶球发布了新的文献求助10
16秒前
16秒前
16秒前
充电宝应助yy采纳,获得10
16秒前
16秒前
圈儿完成签到,获得积分10
17秒前
桃桃完成签到,获得积分10
17秒前
小马甲应助zhao采纳,获得10
17秒前
17秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919