双功能
化学
析氧
电催化剂
钙钛矿(结构)
塔菲尔方程
催化作用
分解水
电化学
无机化学
过电位
化学工程
电极
结晶学
物理化学
生物化学
光催化
工程类
作者
Ya-Nan Zhao,Changhai Liu,Siqi Xu,Shengkang Min,Wenchang Wang,Naotoshi Mitsuzaki,Zhidong Chen
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2023-07-22
卷期号:62 (31): 12590-12599
被引量:7
标识
DOI:10.1021/acs.inorgchem.3c01965
摘要
In this paper, Pr0.7Sr0.3Co1-xRuxO3 perovskite oxides were synthesized by the sol-gel method as bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotentials of PSCR0.05 against HER and OER at 10 mA cm-2 were 319 and 321 mV in alkaline medium, respectively. The Tafel slopes of HER and OER were 87.32 and 118.1 mV/dec, respectively. PSCR0.05 showed the largest electrochemical active area, the smallest charge transfer resistance, and excellent long-term durability. Meanwhile, the PSCR0.05 electrocatalyst was applied for overall water splitting and its cell voltage was maintained at 1.77 V at 10 mA cm-2. The super-exchange interaction between adjacent RuO6-CoO6 octahedra in perovskite made of PSCR0.05 contains sufficient active sites (such as Co2+/Co3+, Ru3+/Ru4+, and O22-/O-). The increase of surface oxygen vacancy and active site is the main reason for the improvement of difunctional catalyst performance. In this work, the electrocatalytic performance of perovskite-type oxides was further optimized by the method of A- and B-site cationic doping regulation, which provides a new idea for perovskite-type bifunctional electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI