Enhanced energy absorption performance of 3D printed 2D auxetic lattices

辅助 材料科学 刚度 变形(气象学) 吸收(声学) 复合材料 有限元法 熔融沉积模型 3D打印 结构工程 工程类
作者
Niranjan Kumar Choudhry,Biranchi Panda,S. Kumar
出处
期刊:Thin-walled Structures [Elsevier BV]
卷期号:186: 110650-110650 被引量:11
标识
DOI:10.1016/j.tws.2023.110650
摘要

Auxetic lattices have attracted increasing attention due to their unusual mechanical behavior and potential for an array of applications. However, a narrow window of stiffness realizable for a given cell topology limits their applications. In this study, a pair of novel 2D re-entrant auxetic lattices capable of exhibiting enhanced stiffness and energy absorption is proposed by introducing vertical ligaments into conventional re-entrant structures. These modified re-entrant auxetic lattices were realized via fused deposition additive manufacturing. The deformation patterns and the energy absorption characteristics of 3D printed auxetic lattices under quasi-static compression were investigated both via Finite Element (FE) simulations and experiments. The effective elastic stiffness of the proposed lattices was theoretically estimated. The FE results corroborated by experiments, elucidate the role of different sub-cells on the effective mechanical properties of the proposed auxetic lattices. The results indicate that the proposed structures — Type A and B variants, exhibit enhanced stiffness (+355%) and superior energy absorption (+165%) in comparison to conventional 2D re-entrant lattices of the same mass. Furthermore, the findings of the study suggest that the strength, stiffness, energy absorption capacity and Poisson’s ratio of 2D auxetic lattices can be tailored by tuning the sub-cell properties and cell wall thickness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助苏日古嘎采纳,获得10
刚刚
胡萝卜发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
刚刚
领导范儿应助欣喜的妙竹采纳,获得10
2秒前
tian完成签到,获得积分0
2秒前
3秒前
4秒前
Cynthia完成签到,获得积分10
4秒前
潜心如水发布了新的文献求助10
5秒前
酷波er应助沉静的曼荷采纳,获得10
5秒前
VDC应助ceeray23采纳,获得30
5秒前
研友_VZG7GZ应助沈梓兴采纳,获得10
6秒前
冯xiaoni发布了新的文献求助30
6秒前
6秒前
科研狗完成签到,获得积分10
7秒前
7秒前
派大星的海洋裤完成签到,获得积分10
7秒前
qingfengnai完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
panjunlu完成签到,获得积分10
9秒前
kenyvvv发布了新的文献求助10
11秒前
勤劳滑板发布了新的文献求助10
11秒前
Lynn完成签到,获得积分10
12秒前
浅浅依云完成签到,获得积分10
13秒前
木寻寻发布了新的文献求助10
13秒前
小六九完成签到 ,获得积分10
15秒前
斯文败类应助NANFENGSUSU采纳,获得10
15秒前
小宋娘亲完成签到 ,获得积分10
15秒前
XI完成签到 ,获得积分10
17秒前
17秒前
yeezy123发布了新的文献求助30
18秒前
NexusExplorer应助起床别睡了采纳,获得10
20秒前
共享精神应助小樊啦采纳,获得10
20秒前
研究生发布了新的文献求助10
22秒前
22秒前
LK完成签到,获得积分10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142528
求助须知:如何正确求助?哪些是违规求助? 4340819
关于积分的说明 13518240
捐赠科研通 4180740
什么是DOI,文献DOI怎么找? 2292579
邀请新用户注册赠送积分活动 1293245
关于科研通互助平台的介绍 1235752