计算机科学
窗口(计算)
蒙特卡罗方法
采样(信号处理)
重要性抽样
数学优化
随机变量
算法
功能(生物学)
控制理论(社会学)
数学
控制(管理)
统计
人工智能
滤波器(信号处理)
进化生物学
计算机视觉
生物
操作系统
作者
Shinya Yasuda,Takashi Kumagai,Hiroshi Yoshida
出处
期刊:IEEE robotics and automation letters
日期:2023-05-01
卷期号:8 (5): 2614-2621
被引量:1
标识
DOI:10.1109/lra.2023.3257681
摘要
We propose an efficient and safe dynamic window approach (DWA) by using deterministic sampling. When the system dynamics have uncertainty, the control input includes errors, so that the DWA objective function becomes a random variable. When a random-choice algorithm with a finite number of samples is used to estimate the objective function, it may miss collisions during prediction. In this work, we approximate the end-state distribution as a one-dimensional distribution for each input candidate in advance and generate sample paths deterministically to eliminate the misses to achieve safe control. Numerical experiments have shown that this method is approximately three times as efficient as the Monte Carlo method in most indoor environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI