Domain adaptation meta-learning network with discard-supplement module for few-shot cross-domain rotating machinery fault diagnosis

计算机科学 领域(数学分析) 断层(地质) 特征(语言学) 背景(考古学) 判别式 人工智能 深度学习 领域知识 机器学习 数学分析 古生物学 数学 地震学 语言学 哲学 地质学 生物
作者
Yu Zhang,Dongying Han,Jinghui Tian,Peiming Shi
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:268: 110484-110484 被引量:28
标识
DOI:10.1016/j.knosys.2023.110484
摘要

Intelligent diagnostic methods based on deep learning have proven to be effective in equipment management and maintenance. However, in practical industrial applications in which data is scarce and equipment, load, and operating conditions are variable, the performance of well-trained laboratory models degrades significantly. To this end, this study proposes a domain adaptation meta-learning network with feature-oriented discard-supplement module (FD-DAML) for few-shot cross-domain rotating machinery fault diagnosis. This method addresses the diagnosis issues of severe domain distribution discrepancy, label space mismatch, and scarcity of labeled samples in the target domain within a unified framework. Specifically, the proposed method attempts a training mode that alternates the execution of the source and target domains meta-learning, and combines it with domain adversarial training. Such a training mode not only contributes to the accumulation of domain-invariant meta-knowledge from the source domain for the model, but also effectively learns the discriminative model for the target domain and achieves good generalization over it. Moreover, a plug-and-play feature-oriented discard-supplement module is designed to perform discard and supplement operations on extracted features against the context, to improve the generalization of the model. Extensive comparative experiments on public datasets, experimental datasets, and actual wind turbine datasets validate the effectiveness of the proposed FD-DAML and the feasibility of engineering diagnostics. The code will be published at https://github.com/zhangyu-ysu/FD-DAML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水月完成签到,获得积分10
2秒前
囡囡吖完成签到,获得积分10
3秒前
甜橙汁发布了新的文献求助10
3秒前
7秒前
Feng5945完成签到 ,获得积分10
7秒前
lqm发布了新的文献求助10
7秒前
satchzhao发布了新的文献求助10
8秒前
传奇3应助川川子采纳,获得10
10秒前
斯文的傲珊完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助30
11秒前
Rondab应助俏皮火采纳,获得10
11秒前
猪猪hero发布了新的文献求助10
11秒前
summitekey完成签到 ,获得积分10
12秒前
逯十一完成签到 ,获得积分10
12秒前
徐徐完成签到,获得积分10
13秒前
Jacky完成签到,获得积分10
13秒前
13秒前
淡定初珍完成签到,获得积分10
13秒前
皇帝的床帘完成签到,获得积分10
15秒前
16秒前
16秒前
赘婿应助坚强的雯采纳,获得10
16秒前
月亮完成签到,获得积分10
18秒前
bkagyin应助小酥肉采纳,获得10
18秒前
碧蓝丹烟完成签到 ,获得积分10
20秒前
21秒前
Parotodus完成签到,获得积分10
22秒前
anyu完成签到,获得积分10
22秒前
22秒前
寒冷的土豆完成签到,获得积分10
24秒前
L.C.发布了新的文献求助10
25秒前
25秒前
小蘑菇应助L.C.采纳,获得10
27秒前
27秒前
务实的元菱完成签到 ,获得积分10
28秒前
satchzhao发布了新的文献求助10
29秒前
zhangyuyu发布了新的文献求助10
30秒前
31秒前
汉堡包应助xukaixuan001采纳,获得10
32秒前
kingwill举报111求助涉嫌违规
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689