清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adversarially Trained Variational Auto-Encoders With Maximum Mean Discrepancy based Regularization

MNIST数据库 生成语法 计算机科学 自编码 人工智能 编码器 生成模型 机器学习 正规化(语言学) 模式识别(心理学) 人工神经网络 操作系统
作者
R. Sathya,K. Sekar,S. Ananthi,T Dheepa
标识
DOI:10.1109/ickecs56523.2022.10060244
摘要

In recent times, generative modeling (GM) has gained much popularity in machine intelligence methods, based on its similar likeness to human intelligence. They have demonstrated a remarkable capacity for creating very realistic bits of information in a variety of formats, including texts, images, and sounds. Generative models such as Generative adversarial networks (GANs) and variational auto-encoders (VAE) are the two methods that provide better solutions for generative tasks. However, VAE have certain limitations. But it might be more useful to learn using feature space distributions, rather than the more direct input space distribution. In this work, maximum mean discrepancy based auto-encoders with generative adversarial networks (MMDAEGAN) model is proposed. The proposed work introduces a novel set of loss functions for training such a network on generative tasks. The experimental results show that the proposed model produces better accuracy and less error value on reconstruction of sampled the MNIST and fashion datasets than the baseline model considered for comparison.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助龚广山采纳,获得10
1秒前
8秒前
涛1完成签到 ,获得积分10
17秒前
23秒前
Hazel完成签到,获得积分20
23秒前
龚广山发布了新的文献求助10
28秒前
老实的从菡应助Hazel采纳,获得30
35秒前
gao0505完成签到,获得积分10
38秒前
1437594843完成签到 ,获得积分10
51秒前
sf完成签到 ,获得积分10
53秒前
萝卜猪完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
绿鬼蓝完成签到 ,获得积分10
1分钟前
ajing完成签到,获得积分10
1分钟前
上官若男应助优美香露采纳,获得30
1分钟前
hyhy完成签到,获得积分10
2分钟前
hyhy发布了新的文献求助10
2分钟前
2分钟前
于yu完成签到 ,获得积分10
2分钟前
sswbzh给宇文雨文的求助进行了留言
2分钟前
2分钟前
天雨流芳完成签到 ,获得积分10
2分钟前
巫马百招完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Qing完成签到 ,获得积分10
3分钟前
3分钟前
李木禾完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
zzhui完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706593
求助须知:如何正确求助?哪些是违规求助? 5175383
关于积分的说明 15247065
捐赠科研通 4860032
什么是DOI,文献DOI怎么找? 2608323
邀请新用户注册赠送积分活动 1559256
关于科研通互助平台的介绍 1517033