亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adversarially Trained Variational Auto-Encoders With Maximum Mean Discrepancy based Regularization

MNIST数据库 生成语法 计算机科学 自编码 人工智能 编码器 生成模型 机器学习 正规化(语言学) 模式识别(心理学) 人工神经网络 操作系统
作者
R. Sathya,K. Sekar,S. Ananthi,T Dheepa
标识
DOI:10.1109/ickecs56523.2022.10060244
摘要

In recent times, generative modeling (GM) has gained much popularity in machine intelligence methods, based on its similar likeness to human intelligence. They have demonstrated a remarkable capacity for creating very realistic bits of information in a variety of formats, including texts, images, and sounds. Generative models such as Generative adversarial networks (GANs) and variational auto-encoders (VAE) are the two methods that provide better solutions for generative tasks. However, VAE have certain limitations. But it might be more useful to learn using feature space distributions, rather than the more direct input space distribution. In this work, maximum mean discrepancy based auto-encoders with generative adversarial networks (MMDAEGAN) model is proposed. The proposed work introduces a novel set of loss functions for training such a network on generative tasks. The experimental results show that the proposed model produces better accuracy and less error value on reconstruction of sampled the MNIST and fashion datasets than the baseline model considered for comparison.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI6.1应助jy采纳,获得10
8秒前
无私匕完成签到,获得积分10
9秒前
10秒前
20秒前
21秒前
25秒前
jy发布了新的文献求助10
27秒前
嘻嘻哈哈完成签到,获得积分10
34秒前
42秒前
42秒前
42秒前
42秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
领导范儿应助Elen1987采纳,获得10
47秒前
48秒前
科研通AI6.1应助jy采纳,获得10
1分钟前
1分钟前
1分钟前
Lucas应助KKLUV采纳,获得10
1分钟前
1分钟前
jy发布了新的文献求助10
1分钟前
1分钟前
伊力扎提完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
852应助zslg采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
zslg发布了新的文献求助10
2分钟前
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732308
求助须知:如何正确求助?哪些是违规求助? 5338178
关于积分的说明 15322147
捐赠科研通 4877945
什么是DOI,文献DOI怎么找? 2620761
邀请新用户注册赠送积分活动 1569978
关于科研通互助平台的介绍 1526615