计算机科学
概化理论
判别式
人工智能
频域
面子(社会学概念)
机器学习
班级(哲学)
模式识别(心理学)
特征学习
特征向量
特征(语言学)
熵(时间箭头)
语音识别
计算机视觉
社会科学
语言学
统计
哲学
物理
数学
量子力学
社会学
作者
Neng Fang,Bo Xiao,Bo Wang,Chong Li,Lanxiang Zhou
标识
DOI:10.1007/978-981-99-8469-5_19
摘要
Face forgery detection has become a critical security concern due to advances in manipulation techniques. Most methods look for forged clues from the spatial or vanilla frequency domain, leading to serious over-fitting. In this paper, we propose a Frequency Attention Module (FAM) that enhances model generalizability in face forgery detection. We theoretically demonstrate the feasibility of frequency attention learning, which allows the network to automatically refine subtle but discriminative forged features and suppress irrelevant components in the frequency domain without complex manual partitions. Besides, considering that commonly-used cross-entropy loss neglects the intra-class compactness, we design the DeepFake Contrastive Loss (DFCL) to decrease intra-class variances for real faces and enlarge inter-class differences in the feature space. Extensive experiments show that our method significantly outperforms SoTA methods on widely-used benchmarks.
科研通智能强力驱动
Strongly Powered by AbleSci AI