Optimizing tomato plant phenotyping detection: Boosting YOLOv8 architecture to tackle data complexity

Boosting(机器学习) 块(置换群论) 机器学习 人工智能 计算机科学 数据挖掘 模式识别(心理学) 数学 几何学
作者
Firozeh Solimani,Angelo Cardellicchio,Giovanni Dimauro,Angelo Petrozza,Stephan Summerer,Francesco Cellini,Vito Renò
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108728-108728 被引量:16
标识
DOI:10.1016/j.compag.2024.108728
摘要

Effective identification of tomato plant traits is crucial for timely monitoring and evaluating their growth and harvest. However, conducting stress experiments on multiple tomato genotypes introduces challenges due to the nature of the data. One of these challenges arises from an imbalanced sample distribution, potentially leading to misclassification between classes and disruptions in model recognition. This paper addresses the effect of these challenges by considering the imbalanced classes of flowers, fruits, and nodes and proposing an improved detection approach through data balancing. A novel data-balancing approach is introduced in this study to overcome the issue of imbalanced data. The proposed solution involves the implementation of a YOLOv8 deep learning model, which effectively detects flowers, fruits, and nodes in tomato plants. This model significantly enhances the ability of the algorithm to detect objects of varying sizes within complex environments. To further bolster the recognition capability of the targeted classes, the proposed model integrates a Squeeze-and-Excitation (SE) block attention module into its head architecture. This module strengthens the model recognition ability by giving increased attention to the studied classes, thereby enhancing overall detection performance. The results demonstrate that the data balancing approach successfully improves the model performance in response to the data challenges. When applying the technique of pre-training the optimal weights obtained from balanced data on imbalanced data, the SE-block module showed significant improvements in outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
执葵完成签到,获得积分20
刚刚
传奇3应助hugo采纳,获得10
1秒前
mmj完成签到 ,获得积分10
1秒前
wys完成签到 ,获得积分10
2秒前
3秒前
4秒前
pluvia完成签到,获得积分10
5秒前
5秒前
执葵发布了新的文献求助20
6秒前
暗号发布了新的文献求助10
7秒前
9秒前
12秒前
15秒前
英姑应助a成采纳,获得10
15秒前
Wsyyy完成签到 ,获得积分10
17秒前
WANGCHU发布了新的文献求助10
18秒前
laity发布了新的文献求助10
19秒前
aa121599发布了新的文献求助10
19秒前
罗翔完成签到,获得积分10
23秒前
laity完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
28秒前
Lin完成签到,获得积分10
31秒前
32秒前
Owen应助现代雪晴采纳,获得10
33秒前
34秒前
34秒前
swby完成签到,获得积分10
35秒前
田様应助wellme采纳,获得10
36秒前
annali完成签到,获得积分10
36秒前
36秒前
岁月静好发布了新的文献求助10
36秒前
852应助小小阿杰采纳,获得10
37秒前
感动忆霜发布了新的文献求助10
38秒前
木子完成签到,获得积分10
38秒前
38秒前
kekerenren发布了新的文献求助10
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371