Chemically induced dynamic polarization by magnetic field on nanoionic photocatalysis via 2-propanol oxidation

光催化 极化(电化学) 丙醇 材料科学 磁场 光电子学 光化学 化学 物理 催化作用 物理化学 有机化学 甲醇 量子力学
作者
Yen-Han Wang,Hung Ji Huang,Jeffrey C.S. Wu
标识
DOI:10.1117/12.3000614
摘要

Heterogenous photocatalysis has emerged as a sustainable and environmentally benign strategy since it converts solar energy into chemical energy. Though more research is exploring the magnetic field effect on photocatalysis, the mechanism is still ambiguous. Magnetic field-assisted and electric-assisted photocatalytic reactions were investigated in this study. In the first magnetic field-assisted experiment, the magnetic field effect on heterogenous photocatalysis was explored with TiO2 and Pt/TiO2. Isopropanol photocatalytic oxidation reaction was conducted. Two levels of dissolved oxygen concentration, magnitude of magnetic flux density and temperature were studied. The magnetic field positive effect was prominent, especially under higher dissolved oxygen concentration and greater magnitude of a magnetic field. For Pt/TiO2 photocatalyst at 10°C and dissolved oxygen concentration over 20 ppm, 450 Gauss increased isopropanol photooxidation by 10%, while 900 Gauss enhanced by 21%. For TiO2 photocatalyst at 10°C dissolved oxygen concentration over 20 ppm, 450 Gauss has no prominent effect, while 900 Gauss enlarged 18% isopropanol photooxidation. The statistical analysis demonstrated that dissolved oxygen with magnetic flux density interaction and DO were the top two influencing elements. The hyperfine mechanism results from the interaction between the electron spins with nuclear spins in atoms. It depends on the elements and the dwelling time of unpaired electrons with its nucleus. The mechanism would contribute to singlet (S) ⇄ triplet (T) intersystem crossing. It was possibly because the net Lorentz force acting on paramagnetic oxygen molecule and singlet-triplet intersystem crossing by magnetic field led to the enhancement of the photooxidation of isopropanol.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oneinlove完成签到,获得积分10
2秒前
3秒前
天天快乐应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得30
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
ww关闭了ww文献求助
6秒前
6秒前
6秒前
6秒前
7秒前
8秒前
9秒前
10秒前
酒九发布了新的文献求助10
11秒前
李宁完成签到,获得积分20
11秒前
冷静的莞发布了新的文献求助10
12秒前
小花花发布了新的文献求助10
13秒前
13秒前
13秒前
葡萄成熟时关注了科研通微信公众号
14秒前
15秒前
莫言发布了新的文献求助10
15秒前
深情安青应助呵呵哒采纳,获得10
15秒前
16秒前
科研通AI2S应助悠然采纳,获得10
18秒前
18秒前
不落完成签到,获得积分10
18秒前
Bismarck关注了科研通微信公众号
24秒前
24秒前
lucky完成签到,获得积分10
25秒前
27秒前
27秒前
28秒前
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136101
求助须知:如何正确求助?哪些是违规求助? 2787001
关于积分的说明 7780169
捐赠科研通 2443122
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870