材料科学
气凝胶
多孔性
纳米颗粒
热解
复合材料
碳纤维
热稳定性
复合数
化学工程
纳米技术
工程类
作者
Xiaojun Zeng,Xiawen Peng,Ya Ning,Xiao Jiang,Ronghai Yu,Shouxin Zhang
标识
DOI:10.1016/j.jmst.2023.12.046
摘要
Functional carbonaceous materials with controllable morphology, low apparent density, large surface area, and high porosity starting from natural precursors using environmentally friendly processes are an appealing topic in the electromagnetic wave (EMW) field. In this work, renewable pine woods with ordered pore channels are selected to load highly dispersed CoFe alloy nanoparticles formed by in-situ pyrolysis reaction between Fe3O4 nanospheres and ZIF-67 nanoparticles. The constructed three-dimensional (3D) porous CWA-CoFe-NC aerogel inherits the characteristics of highly dispersed small CoFe alloy nanoparticles, porous carbon aerogel with rectangular honeycomb-like structure, and abundant N heteroatoms. Therefore, CWA-CoFe-NC aerogel achieves an excellent EMW absorption performance with reflection loss (RL) values of -61.6 and -58.2 dB at matching thicknesses of 3.7 and 1.2 mm, respectively. Benefiting from the reasonable design of the composite structure and composition, 3D porous aerogel also enables great potential for multifunctional applications. Particularly, good lightweight and mechanical properties are realized in the CWA-CoFe-NC aerogels due to their ordered pore channels and abundant rectangular pores. Furthermore, good flame retardant performance can ensure the serviceability of the target device in high/low-temperature environments. In addition, CWA-CoFe-NC aerogels show good thermal stability and thermal management characteristics. This work provides a novel and effective method for the preparation of lightweight, high-performance, and multifunctional EMW absorbers.
科研通智能强力驱动
Strongly Powered by AbleSci AI