化学
DPPH
壳聚糖
苯甲酸
抗氧化剂
激进的
超氧化物
羟基自由基
核化学
有机化学
辣椒疫霉
食品科学
酶
胡椒粉
作者
Hehe Yang,Yao Liu,Fang Wen,Xu Yan,Yandong Zhang,Zhimei Zhong
标识
DOI:10.1016/j.ijbiomac.2023.129096
摘要
The current study created three novel chitosan derivatives named BACS, PIBACS, and MHBACS by grafting benzoic acid (BA), p-isopropyl benzoic acid (PIBA), and m-hydroxybenzoic acid (MHBA) onto chitosan (CS). The structures of the derivatives were investigated using infrared spectroscopy (FT-IR) and nuclear magnetic resonance (13C NMR). The derivatives were discovered to be 45.06 %–60.49 % substituted using elemental analysis (EA). Based on the findings of in vitro antioxidant experiments (hydroxyl radical scavenging activity, superoxide anion radical scavenging activity, and DPPH radical scavenging activity), all of the derivatives had a higher hydroxyl radical scavenging activity than the chitosan raw material. MHBACS scavenged (31.02 ± 0.90)% of hydroxyl radicals at 0.5 mg/mL, 28.69 % more than chitosan raw. The derivatives scavenged more superoxide anion radicals than the chitosan feedstock at a particular concentration. For instance, at a test dose of 0.2 mg/mL, the scavenging rate of MHBACS on superoxide anion radicals was 7.75 % greater than that of chitosan raw materials. DPPH radical scavenging activity, on the other hand, was not as competent as chitosan feedstock. The growth rate approach was used to assess the potential of the three derivatives to inhibit the development of four phytopathogenic fungi. Chitosan derivatives have better antifungal efficacy than chitosan raw materials. PIBACS, MHBACS, BACS, and Wuyiencin inhibited Phytophthora capsici by (98.03 ± 1.95)%, (81.73 ± 1.63)%, (66.38 ± 1.81)%, and (93.01 ± 2.69)%, respectively, at 1.0 mg/mL. PIBACS had a higher inhibitory impact on Phytophthora capsici than the positive control. Based on the evidence presented above, it is reasonable to conclude that the addition of benzoic acid molecules increased the antioxidant and antifungal capabilities of chitosan.
科研通智能强力驱动
Strongly Powered by AbleSci AI