睡眠呼吸暂停
孟德尔随机化
全基因组关联研究
转录组
蛋白质组
多导睡眠图
呼吸暂停
生物信息学
生物
神经科学
医学
计算生物学
遗传学
基因
内科学
单核苷酸多态性
基因表达
基因型
遗传变异
作者
Jianxiong Gui,Linxue Meng,Dishu Huang,Lingman Wang,Xiaoyue Yang,Ran Ding,Ziyao Han,Li Cheng,Li Jiang
标识
DOI:10.1016/j.sleep.2023.12.026
摘要
Sleep apnea is regarded as a significant global public health issue. The relationship between sleep apnea and nervous system diseases is intricate, yet the precise mechanism remains unclear. In this study, we conducted a comprehensive analysis integrating the human brain proteome and transcriptome with sleep apnea genome-wide association study (GWAS), employing genome-wide association study (PWAS), transcriptome-wide association study (TWAS), Mendelian randomization (MR), and colocalization analysis to identify brain proteins associated with sleep apnea. The discovery PWAS identified six genes (CNNM2, XRCC6, C3orf18, CSDC2, SQRDL, and DGUOK) whose altered protein abundances in the brain were found to be associated with sleep apnea. The independent confirmatory PWAS successfully replicated four out of these six genes (CNNM2, C3orf18, CSDC2, and SQRDL). The transcriptome level TWAS analysis further confirmed two out of the four genes (C3orf18 and CSDC2). The subsequent two-sample Mendelian randomization provided compelling causal evidence supporting the association of C3orf18, CSDC2, CNNM2, and SQRDL with sleep apnea. The co-localization analysis further supported the association between CSDC2 and sleep apnea (posterior probability of hypothesis 4 = 0.75). In summary, the integration of brain proteomic and transcriptomic data provided multifaceted evidence supporting causal relationships between four specific brain proteins (CSDC2, C3orf18, CNNM2, and SQRDL) and sleep apnea. Our findings provide new insights into the molecular basis of sleep apnea in the brain, promising to advance understanding of its pathogenesis in future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI