An Efficient Approximation Algorithm for Service Function Chaining Placement in Edge–Cloud Computing Industrial Internet of Things

计算机科学 云计算 连锁 边缘计算 互联网 GSM演进的增强数据速率 物联网 工业互联网 服务(商务) 算法 分布式计算 计算机网络 计算机安全 电信 万维网 经济 经济 操作系统 心理治疗师 心理学
作者
Mina Asgarian,Kamal Jamshidi,Ali Bohlooli
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 12815-12822 被引量:5
标识
DOI:10.1109/jiot.2023.3338516
摘要

Edge-Cloud Computing Industrial Internet of Things (ECIIoT) is composed of edge and cloud nodes with Industrial Internet of Things (IIoT) devices to get the service function chain (SFC). The service function chaining placement refers to a series of virtual network functions (VNFs) that are run at edge or cloud nodes in the form of software instances. In the problem of ECIIoT service embedding, the multiple VNFs must be placed for IIoT devices, so how these virtual functions are placed at cloud or edge nodes to minimize the delay is challenging to achieve. In this article, the placement of virtual functions with considering the edge and cloud nodes is proposed. In our model, the cloud server with edge nodes can run the required functions of IIoT devices in the SFC to decrease the imposed delay and use the computation resource in an efficient way. This is formed as an optimization problem to minimize the delay and residual computing resource consumption and reuse the previous functions. The exact solution of this problem is not available in polynomial time, therefore an efficient approximation algorithm is proposed which solves the problem in three stages. First, it linearizes the nonlinear objective function and constraint and approximates them by the convexity of these functions. Then, it solves the relaxed linear problem and finally, it rounds the decision variables in a heuristic way. This solution not only has polynomial time computational complexity but also obtains the near-optimal solution. The simulation results confirm the effectiveness of this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无助的人发布了新的文献求助10
刚刚
苏苏发布了新的文献求助10
刚刚
白河完成签到,获得积分10
刚刚
刚刚
桐桐应助没有昵称采纳,获得10
刚刚
健忘的煎饼完成签到 ,获得积分10
1秒前
徐家豪发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
3秒前
SYLH应助Zack采纳,获得30
3秒前
6秒前
映城应助白河采纳,获得30
6秒前
7秒前
解语花发布了新的文献求助10
8秒前
Rondab应助活泼的云朵采纳,获得10
9秒前
可爱的函函应助哇哈哈哈采纳,获得10
11秒前
珂珂子完成签到,获得积分10
13秒前
13秒前
15秒前
zjxu完成签到,获得积分20
16秒前
BREEZE发布了新的文献求助10
17秒前
丫头完成签到,获得积分10
17秒前
18秒前
机电虎发布了新的文献求助30
19秒前
研友_8RyzBZ发布了新的文献求助10
19秒前
21秒前
21秒前
科目三应助beiest采纳,获得10
21秒前
21秒前
24秒前
完美世界应助斯文的傲珊采纳,获得10
24秒前
刘刘发布了新的文献求助10
25秒前
25秒前
XiHuanChi完成签到,获得积分10
25秒前
机电虎完成签到,获得积分20
26秒前
26秒前
upupeasymoney发布了新的文献求助10
26秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824