Diagnosis Framework for Probable Alzheimer’s Disease and Mild Cognitive Impairment Based on Multi-Dimensional Emotion Features

认知 认知障碍 心理学 人工智能 情感(语言学) 听力学 医学 认知心理学 计算机科学 精神科 沟通
作者
Chunchao Zhang,Xiaolin Lei,Wenhao Ma,Jinyi Long,Shun Long,Xiang Chen,Jun Luo,Qian Tao
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jad-230703
摘要

Background: Emotion and cognition are intercorrelated. Impaired emotion is common in populations with Alzheimer’s disease (AD) and mild cognitive impairment (MCI), showing promises as an early detection approach. Objective: We aim to develop a novel automatic classification tool based on emotion features and machine learning. Methods: Older adults aged 60 years or over were recruited among residents in the long-term care facilities and the community. Participants included healthy control participants with normal cognition (HC, n = 26), patients with MCI (n = 23), and patients with probable AD (n = 30). Participants watched emotional film clips while multi-dimensional emotion data were collected, including mental features of Self-Assessment Manikin (SAM), physiological features of electrodermal activity (EDA), and facial expressions. Emotional features of EDA and facial expression were abstracted by using continuous decomposition analysis and EomNet, respectively. Bidirectional long short-term memory (Bi-LSTM) was used to train classification model. Hybrid fusion was used, including early feature fusion and late decision fusion. Data from 79 participants were utilized into deep machine learning analysis and hybrid fusion method. Results: By combining multiple emotion features, the model’s performance of AUC value was highest in classification between HC and probable AD (AUC = 0.92), intermediate between MCI and probable AD (AUC = 0.88), and lowest between HC and MCI (AUC = 0.82). Conclusions: Our method demonstrated an excellent predictive power to differentiate HC/MCI/AD by fusion of multiple emotion features. The proposed model provides a cost-effective and automated method that can assist in detecting probable AD and MCI from normal aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
Hello应助科研小白采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
开朗的驳完成签到,获得积分10
2秒前
思源应助Lizhe采纳,获得10
2秒前
Qi关注了科研通微信公众号
2秒前
Lucas应助司徒无剑采纳,获得10
3秒前
咸鱼飞飞飞完成签到,获得积分10
3秒前
柯柯完成签到 ,获得积分10
3秒前
周星星发布了新的文献求助10
3秒前
3秒前
阉太狼完成签到,获得积分10
4秒前
4秒前
SHENYANG发布了新的文献求助10
5秒前
cyyan完成签到,获得积分10
6秒前
6秒前
开心听露完成签到,获得积分10
6秒前
冷静的访天完成签到 ,获得积分10
7秒前
自由的曼青完成签到,获得积分10
8秒前
hyx-dentist发布了新的文献求助10
9秒前
乔治哇完成签到 ,获得积分10
9秒前
小杨完成签到,获得积分10
10秒前
爆米花应助乐乐采纳,获得10
11秒前
热情飞绿发布了新的文献求助10
11秒前
ppboyindream完成签到,获得积分10
11秒前
无花果应助聂学雨采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825