Cognitive robotics: Deep learning approaches for trajectory and motion control in complex environment

人工智能 机器人学 弹道 运动(物理) 认知机器人学 认知 计算机科学 运动控制 深度学习 心理学 机器人 神经科学 物理 天文
作者
Muhammad Usman Shoukat,Lirong Yan,Di Deng,Muhammad Imtiaz,Safdar Muhammad,Saqib Ali Nawaz
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102370-102370 被引量:11
标识
DOI:10.1016/j.aei.2024.102370
摘要

Simultaneous Localization and Mapping (SLAM) is the research hotspot of robot positioning and navigation. In a large-scale complex environment, closed-loop detection by vision or lidar has low reliability and high computational cost. To solve this problem, a graph optimization SLAM algorithm based on YOLOv5 (You Only Look Once version 5) and Wi-Fi fingerprint sequence matching is proposed. The proposed method utilizes fusion deep learning approaches to enhance the accuracy and robustness of closed-loop detection to navigate the robot. The algorithm uses an effective object detection network and the fingerprint sequence for closed-loop detection to figure out the dynamic semantic information within a scene. Therefore, the traditional matching based on fingerprint point pairs is extended to include matching of fingerprint sequences. This can greatly reduce the probability of closed-loop misjudgment, ensuring the accuracy of closed-loop detection and meeting the accuracy requirements of the SLAM algorithm in a wide range of complex environments. The proposed algorithm is verified with two sets of experimental data (the robot starts from different starting points): the accuracy of the proposed algorithm is 22.95% higher than that of the first set of data compared with the Gaussian similarity method; the second group of data increased by 39.19%. The experimental results show that the proposed method improves the accuracy and robustness of mobile robot localization and mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WeiLv完成签到,获得积分10
1秒前
平淡妙梦发布了新的文献求助10
2秒前
兔子完成签到,获得积分10
2秒前
田様应助ZZ采纳,获得10
3秒前
Yziii应助科研通管家采纳,获得20
3秒前
xueler发布了新的文献求助10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
Cassie应助科研通管家采纳,获得10
4秒前
寻道图强应助科研通管家采纳,获得30
4秒前
Jasper应助chen采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
鲤鱼鸽子应助科研通管家采纳,获得10
4秒前
寻道图强应助科研通管家采纳,获得30
5秒前
o我不是高手完成签到 ,获得积分10
5秒前
思源应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得20
5秒前
852应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得30
5秒前
今后应助科研通管家采纳,获得10
5秒前
小二郎应助Ly采纳,获得10
5秒前
5秒前
李健应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得30
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
Yziii应助科研通管家采纳,获得20
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
萧水白应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
寻道图强应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
7秒前
zyx174733完成签到,获得积分10
7秒前
8秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074861
求助须知:如何正确求助?哪些是违规求助? 2728212
关于积分的说明 7502977
捐赠科研通 2376311
什么是DOI,文献DOI怎么找? 1259944
科研通“疑难数据库(出版商)”最低求助积分说明 610771
版权声明 597101