Cognitive robotics: Deep learning approaches for trajectory and motion control in complex environment

人工智能 机器人学 弹道 运动(物理) 认知机器人学 认知 计算机科学 运动控制 深度学习 心理学 机器人 神经科学 物理 天文
作者
Muhammad Usman Shoukat,Lirong Yan,Di Deng,Muhammad Imtiaz,Safdar Muhammad,Saqib Ali Nawaz
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102370-102370 被引量:11
标识
DOI:10.1016/j.aei.2024.102370
摘要

Simultaneous Localization and Mapping (SLAM) is the research hotspot of robot positioning and navigation. In a large-scale complex environment, closed-loop detection by vision or lidar has low reliability and high computational cost. To solve this problem, a graph optimization SLAM algorithm based on YOLOv5 (You Only Look Once version 5) and Wi-Fi fingerprint sequence matching is proposed. The proposed method utilizes fusion deep learning approaches to enhance the accuracy and robustness of closed-loop detection to navigate the robot. The algorithm uses an effective object detection network and the fingerprint sequence for closed-loop detection to figure out the dynamic semantic information within a scene. Therefore, the traditional matching based on fingerprint point pairs is extended to include matching of fingerprint sequences. This can greatly reduce the probability of closed-loop misjudgment, ensuring the accuracy of closed-loop detection and meeting the accuracy requirements of the SLAM algorithm in a wide range of complex environments. The proposed algorithm is verified with two sets of experimental data (the robot starts from different starting points): the accuracy of the proposed algorithm is 22.95% higher than that of the first set of data compared with the Gaussian similarity method; the second group of data increased by 39.19%. The experimental results show that the proposed method improves the accuracy and robustness of mobile robot localization and mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
海盗船长完成签到,获得积分10
1秒前
等待寄云完成签到 ,获得积分10
1秒前
酷波er应助王冉冉采纳,获得10
2秒前
lcjynwe完成签到,获得积分10
3秒前
新奇完成签到 ,获得积分10
3秒前
Misty_发布了新的文献求助10
3秒前
iNk应助不会取名字采纳,获得20
3秒前
Orange应助Hannes采纳,获得10
3秒前
5秒前
多多少少忖测的情完成签到,获得积分10
5秒前
小马甲应助lx采纳,获得10
5秒前
6秒前
阔达冰兰发布了新的文献求助10
6秒前
GAO完成签到,获得积分10
6秒前
yy发布了新的文献求助10
7秒前
7秒前
7秒前
奋斗冬萱完成签到,获得积分10
7秒前
康园完成签到,获得积分10
8秒前
活泼的面包完成签到,获得积分10
10秒前
123456完成签到,获得积分10
11秒前
重要谷冬完成签到,获得积分10
11秒前
深情丸子发布了新的文献求助10
11秒前
11秒前
杰瑞完成签到,获得积分10
13秒前
13秒前
ding应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
fang应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
李小鑫吖发布了新的文献求助10
14秒前
ding应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
Zoe应助科研通管家采纳,获得50
15秒前
个性元枫应助科研通管家采纳,获得10
15秒前
15秒前
贰鸟应助科研通管家采纳,获得20
15秒前
华仔应助Misty_采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048