Probabilistic Caching Strategy and TinyML-Based Trajectory Planning in UAV-Assisted Cellular IoT System

计算机科学 概率逻辑 弹道 物联网 蜂窝无线电 计算机网络 分布式计算 实时计算 人工智能 基站 嵌入式系统 物理 天文
作者
Xin Gao,Xue Wang,Zhihong Qian
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21227-21238 被引量:1
标识
DOI:10.1109/jiot.2024.3360444
摘要

Unmanned aerial vehicles (UAVs) deployed as an aerial assisted base station has the characteristics of flexibility and mobility. As an effective way to reduce the communication pressure of network center, content edge caching combined with UAV-assisted network is a promising solution to release the surge of network data traffic pressure. This paper studies the probabilistic caching strategy in UAV-assisted IoT system which supports device-to-device (D2D) communication and edge caching. Firstly, a three-tier heterogeneous model including user devices (UDs), ground small base stations (SBSs) and UAV is proposed. Considering the random characteristics of user movement and the interference characteristics between different nodes, the cache hit probability and successful transmission probability under different content transmission modes are derived by using stochastic geometry. On this basis, the total offloading probability is derived. The joint caching strategy of UD, SBS and UAV is solved with the goal of maximizing cache hit probability and successful offloading probability, respectively. For the mobile deployment of UAV, considering the limited computing resources and battery endurance of UAV, to enable the UAV to provide services to requesting UDs as soon as possible, this paper first uses tiny machine learning (TinyML) to predict the requesting probability of UDs, and then designs a UAV path planning algorithm to cover all users with high requesting probability in the shortest time. Through simulation analysis, we compared the performance of the two proposed caching strategies and found that the strategy of maximizing successful offloading probability has more advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助程许采纳,获得30
1秒前
Hello应助HERACLE采纳,获得10
1秒前
zengxinhong完成签到,获得积分10
1秒前
缥缈南露发布了新的文献求助10
1秒前
翡冷翠完成签到,获得积分10
1秒前
科研通AI5应助cc采纳,获得10
2秒前
2秒前
小马甲应助liuxuying采纳,获得10
2秒前
2秒前
谦让沛儿关注了科研通微信公众号
2秒前
额嗯额完成签到,获得积分20
3秒前
Akim应助obaica采纳,获得10
3秒前
Flyzhang发布了新的文献求助10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
劲秉应助科研通管家采纳,获得10
4秒前
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
在水一方应助缥缈南露采纳,获得10
5秒前
6秒前
dads发布了新的文献求助10
6秒前
6秒前
好大一只饼饼完成签到,获得积分10
7秒前
7秒前
7秒前
Owen应助Daniel.Wu采纳,获得10
7秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483444
求助须知:如何正确求助?哪些是违规求助? 3072776
关于积分的说明 9127955
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517151
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797