亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HFAD: Homomorphic Filtering Adversarial Defense Against Adversarial Attacks in Automatic Modulation Classification

对抗制 计算机科学 同态加密 计算机安全 调制(音乐) 计算机网络 人工智能 加密 美学 哲学
作者
Sicheng Zhang,Yun Lin,Jiarun Yu,Jianting Zhang,Qi Xuan,Dongwei Xu,Juzhen Wang,Meiyu Wang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 880-892
标识
DOI:10.1109/tccn.2024.3360514
摘要

Deep neural networks provide intelligent solutions for Automatic Modulation Classification (AMC) tasks in the field of communication. However, their susceptibility to adversarial examples due to the interpretability problem presents a challenge as it leads to anomalous decisions. Emerging studies suggest that the high-frequency constituents within signals constitute a fundamental source of adversarial vulnerability. To address this issue, this paper introduces a Homomorphic Filtering Adversarial Defense (HFAD) algorithm that aims to effectively defend against adversarial examples by applying frequency domain filtering on the signal. This approach enhances the security and reliability of the AMC model by attenuating high-frequency components of the signal through homomorphic filtering, thereby reducing errors caused by adversarial perturbations on model outputs. The robustness of the AMC model is further enhanced through the integration of HFAD with data augmentation strategies. Experimental results demonstrate that the proposed defense algorithm not only maintains high signal recognition accuracy but also preserves communication signal transmission quality. Moreover, HFAD effectively withstands a wide range of white-box adversarial attacks and demonstrates resilience against black-box adversarial attacks, thereby enhancing the robustness of the AMC model against adversarial examples and exhibiting strong transfer performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周以筠完成签到 ,获得积分10
3秒前
9秒前
fransiccarey完成签到,获得积分10
11秒前
斯文败类应助xwc采纳,获得10
14秒前
小黑超努力完成签到 ,获得积分10
16秒前
Criminology34应助Krstal采纳,获得10
17秒前
短短急个球完成签到,获得积分10
18秒前
19秒前
20秒前
23秒前
sa完成签到 ,获得积分10
28秒前
Krstal给Krstal的求助进行了留言
28秒前
29秒前
Nan语发布了新的文献求助10
31秒前
香蕉觅云应助linsen采纳,获得10
32秒前
南宫硕完成签到 ,获得积分10
32秒前
xwc发布了新的文献求助10
34秒前
晚星完成签到 ,获得积分10
36秒前
37秒前
40秒前
40秒前
明理的惜蕊完成签到,获得积分10
41秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
shhoing应助科研通管家采纳,获得10
43秒前
shhoing应助科研通管家采纳,获得10
43秒前
ztayx完成签到 ,获得积分10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
vetboy发布了新的文献求助10
44秒前
tzj发布了新的文献求助30
46秒前
如意艳血完成签到 ,获得积分10
51秒前
52秒前
52秒前
xwc完成签到,获得积分10
53秒前
陶陶子发布了新的文献求助10
57秒前
1分钟前
1分钟前
1分钟前
xiha西希完成签到,获得积分10
1分钟前
1分钟前
tzj完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543024
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610916
捐赠科研通 4570411
什么是DOI,文献DOI怎么找? 2505751
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454364