HFAD: Homomorphic Filtering Adversarial Defense Against Adversarial Attacks in Automatic Modulation Classification

对抗制 计算机科学 同态加密 计算机安全 调制(音乐) 计算机网络 人工智能 加密 美学 哲学
作者
Sicheng Zhang,Yun Lin,Jiarun Yu,Jianting Zhang,Qi Xuan,Dongwei Xu,Juzhen Wang,Meiyu Wang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 880-892
标识
DOI:10.1109/tccn.2024.3360514
摘要

Deep neural networks provide intelligent solutions for Automatic Modulation Classification (AMC) tasks in the field of communication. However, their susceptibility to adversarial examples due to the interpretability problem presents a challenge as it leads to anomalous decisions. Emerging studies suggest that the high-frequency constituents within signals constitute a fundamental source of adversarial vulnerability. To address this issue, this paper introduces a Homomorphic Filtering Adversarial Defense (HFAD) algorithm that aims to effectively defend against adversarial examples by applying frequency domain filtering on the signal. This approach enhances the security and reliability of the AMC model by attenuating high-frequency components of the signal through homomorphic filtering, thereby reducing errors caused by adversarial perturbations on model outputs. The robustness of the AMC model is further enhanced through the integration of HFAD with data augmentation strategies. Experimental results demonstrate that the proposed defense algorithm not only maintains high signal recognition accuracy but also preserves communication signal transmission quality. Moreover, HFAD effectively withstands a wide range of white-box adversarial attacks and demonstrates resilience against black-box adversarial attacks, thereby enhancing the robustness of the AMC model against adversarial examples and exhibiting strong transfer performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xsy发布了新的文献求助10
1秒前
刘锋锋发布了新的文献求助10
1秒前
1秒前
1秒前
研友_n2QP2L应助cccxxxccc采纳,获得30
1秒前
1秒前
LYSM应助向雨竹采纳,获得10
2秒前
安之若素完成签到,获得积分10
2秒前
Alex完成签到,获得积分10
2秒前
2秒前
欸嘿完成签到,获得积分10
3秒前
3秒前
dearcih完成签到,获得积分10
3秒前
Orange应助LLY采纳,获得10
3秒前
渡1212发布了新的文献求助10
4秒前
开朗的夜阑完成签到,获得积分10
4秒前
爱吃香菜发布了新的文献求助10
5秒前
今日赢耶完成签到,获得积分10
6秒前
杰尼龟发布了新的文献求助10
6秒前
斯文败类应助平常的雁凡采纳,获得10
6秒前
6秒前
114发布了新的文献求助10
6秒前
铜绿菌完成签到,获得积分10
6秒前
6秒前
嘻嘻完成签到,获得积分10
7秒前
不安分的橙子完成签到 ,获得积分10
7秒前
读论文的小同志完成签到,获得积分20
7秒前
任善庆发布了新的文献求助10
8秒前
bkagyin应助张张采纳,获得10
8秒前
完美世界应助健忘捕采纳,获得10
8秒前
无花果应助优美熠悦采纳,获得10
9秒前
张大诚完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
CZN完成签到,获得积分10
9秒前
踏实的师完成签到,获得积分10
10秒前
玉玉鼠完成签到,获得积分10
10秒前
Oliver完成签到 ,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953878
求助须知:如何正确求助?哪些是违规求助? 3499920
关于积分的说明 11097238
捐赠科研通 3230331
什么是DOI,文献DOI怎么找? 1785920
邀请新用户注册赠送积分活动 869697
科研通“疑难数据库(出版商)”最低求助积分说明 801572