HFAD: Homomorphic Filtering Adversarial Defense Against Adversarial Attacks in Automatic Modulation Classification

对抗制 计算机科学 同态加密 计算机安全 调制(音乐) 计算机网络 人工智能 加密 美学 哲学
作者
Sicheng Zhang,Yun Lin,Jiarun Yu,Jianting Zhang,Qi Xuan,Dongwei Xu,Juzhen Wang,Meiyu Wang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 880-892
标识
DOI:10.1109/tccn.2024.3360514
摘要

Deep neural networks provide intelligent solutions for Automatic Modulation Classification (AMC) tasks in the field of communication. However, their susceptibility to adversarial examples due to the interpretability problem presents a challenge as it leads to anomalous decisions. Emerging studies suggest that the high-frequency constituents within signals constitute a fundamental source of adversarial vulnerability. To address this issue, this paper introduces a Homomorphic Filtering Adversarial Defense (HFAD) algorithm that aims to effectively defend against adversarial examples by applying frequency domain filtering on the signal. This approach enhances the security and reliability of the AMC model by attenuating high-frequency components of the signal through homomorphic filtering, thereby reducing errors caused by adversarial perturbations on model outputs. The robustness of the AMC model is further enhanced through the integration of HFAD with data augmentation strategies. Experimental results demonstrate that the proposed defense algorithm not only maintains high signal recognition accuracy but also preserves communication signal transmission quality. Moreover, HFAD effectively withstands a wide range of white-box adversarial attacks and demonstrates resilience against black-box adversarial attacks, thereby enhancing the robustness of the AMC model against adversarial examples and exhibiting strong transfer performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheng发布了新的文献求助10
1秒前
lan发布了新的文献求助10
1秒前
77完成签到,获得积分10
1秒前
LaTeXer重新开启了Crt文献应助
1秒前
淡然的静珊完成签到,获得积分10
1秒前
香蕉觅云应助Breathe采纳,获得10
2秒前
2秒前
2秒前
徐昊雯发布了新的文献求助10
2秒前
科研通AI5应助汤柏钧采纳,获得10
2秒前
玖玖救捌壹完成签到 ,获得积分20
2秒前
2秒前
3秒前
ping发布了新的文献求助10
3秒前
yang发布了新的文献求助10
3秒前
4秒前
虚心的夏青完成签到,获得积分10
4秒前
爱狗先森完成签到,获得积分10
4秒前
4秒前
李健的小迷弟应助Cora采纳,获得10
4秒前
大个应助haha采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
fox199753206完成签到,获得积分10
5秒前
5秒前
小王很哇塞完成签到 ,获得积分20
5秒前
Owen应助lzz采纳,获得10
5秒前
小二郎应助chifan采纳,获得10
6秒前
子车茗应助xiaosongmufaeins采纳,获得20
7秒前
所所应助Satan采纳,获得10
7秒前
科研通AI5应助生动的翠容采纳,获得10
7秒前
神猪完成签到,获得积分10
7秒前
zuhayr发布了新的文献求助10
7秒前
123131发布了新的文献求助10
8秒前
8秒前
8秒前
糕冷草莓发布了新的文献求助10
8秒前
WJW发布了新的文献求助10
8秒前
mzhmhy完成签到,获得积分10
8秒前
852应助沉默的莞采纳,获得20
9秒前
JamesPei应助闪闪如南采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437