HFAD: Homomorphic Filtering Adversarial Defense Against Adversarial Attacks in Automatic Modulation Classification

对抗制 计算机科学 同态加密 计算机安全 调制(音乐) 计算机网络 人工智能 加密 哲学 美学
作者
Sicheng Zhang,Yun Lin,Jiarun Yu,Jianting Zhang,Qi Xuan,Dongwei Xu,Juzhen Wang,Meiyu Wang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 880-892
标识
DOI:10.1109/tccn.2024.3360514
摘要

Deep neural networks provide intelligent solutions for Automatic Modulation Classification (AMC) tasks in the field of communication. However, their susceptibility to adversarial examples due to the interpretability problem presents a challenge as it leads to anomalous decisions. Emerging studies suggest that the high-frequency constituents within signals constitute a fundamental source of adversarial vulnerability. To address this issue, this paper introduces a Homomorphic Filtering Adversarial Defense (HFAD) algorithm that aims to effectively defend against adversarial examples by applying frequency domain filtering on the signal. This approach enhances the security and reliability of the AMC model by attenuating high-frequency components of the signal through homomorphic filtering, thereby reducing errors caused by adversarial perturbations on model outputs. The robustness of the AMC model is further enhanced through the integration of HFAD with data augmentation strategies. Experimental results demonstrate that the proposed defense algorithm not only maintains high signal recognition accuracy but also preserves communication signal transmission quality. Moreover, HFAD effectively withstands a wide range of white-box adversarial attacks and demonstrates resilience against black-box adversarial attacks, thereby enhancing the robustness of the AMC model against adversarial examples and exhibiting strong transfer performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1604531786发布了新的文献求助10
1秒前
魁梧的小霸王完成签到,获得积分10
1秒前
星辰大海应助123采纳,获得10
1秒前
1秒前
是一只象完成签到,获得积分20
1秒前
科研通AI5应助海鸥海鸥采纳,获得10
2秒前
幸福遥完成签到,获得积分10
3秒前
3秒前
小王发布了新的文献求助10
3秒前
热心的代桃完成签到,获得积分10
3秒前
CodeCraft应助Olsters采纳,获得10
3秒前
4秒前
研友_IEEE快到碗里来完成签到,获得积分10
5秒前
哈哈大笑应助吴岳采纳,获得10
5秒前
5秒前
酷炫中蓝完成签到,获得积分10
5秒前
早川完成签到 ,获得积分10
6秒前
拼搏语薇完成签到,获得积分10
6秒前
科研通AI5应助SCI采纳,获得10
7秒前
dling02完成签到 ,获得积分10
7秒前
7秒前
是天使呢完成签到,获得积分10
7秒前
8秒前
8秒前
内向秋寒发布了新的文献求助10
8秒前
cc发布了新的文献求助10
8秒前
ding应助zhui采纳,获得10
9秒前
drwang120完成签到 ,获得积分10
9秒前
坨坨西州完成签到,获得积分10
10秒前
海绵体宝宝应助Louise采纳,获得20
10秒前
小马甲应助lichaoyes采纳,获得10
10秒前
10秒前
11秒前
11秒前
坨坨西州发布了新的文献求助10
12秒前
彬彬发布了新的文献求助10
12秒前
大模型应助Abao采纳,获得10
12秒前
sfw驳回了苏照杭应助
13秒前
dingdong发布了新的文献求助10
13秒前
别拖延了要毕业啊完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794