Easy-Net: A Lightweight Building Extraction Network Based on Building Features

计算机科学 萃取(化学) 人工智能 色谱法 化学
作者
Huaigang Huang,Jiabin Liu,Ruisheng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3348102
摘要

The efficient, accurate, and automatic extraction of buildings from remote sensing imagery is a key task in the intelligent extraction of remote sensing information owing to its importance in applications including urban planning, change detection, and unmanned aerial vehicle (UAV) navigation. However, the fast and accurate extraction of buildings from remote sensing images remains difficult owing to the complex, variable nature of geographic information, and variable external appearances of buildings. This is because many existing building extraction networks fail to incorporate building features into their design. Also, generally, simple lightweight networks do not accurately identify buildings, while large complex networks have high operational costs. Therefore, in this article, we proposed a simple, effective feature fusion strategy based on the building features extracted by the lightweight backbone network; also we have improved the feature fusion performance by combining the advantages of a convolutional neural network (CNN) and transformer; and presented the lightweight building extraction network called Easy-Net. We conducted experiments comparing Easy-Net with existing high-performing networks on the public dataset WHU and self-made datasets; results showed the efficiency and accuracy of our method in the task of building extraction from remote sensing images. Thus, Easy-Net was found to be a promising alternative to existing building extraction networks. Code has been released at: github.com/teddy132/EasyNet_for_building_extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songvv发布了新的文献求助10
刚刚
小羊发布了新的文献求助10
1秒前
田瑜娜发布了新的文献求助10
1秒前
热情的听露给热情的听露的求助进行了留言
2秒前
TiAmo发布了新的文献求助10
2秒前
gj2221423发布了新的文献求助10
3秒前
Raylihuang应助贵金属LiLi采纳,获得20
4秒前
zs完成签到,获得积分10
4秒前
ywt发布了新的文献求助10
5秒前
6秒前
Lucas应助wenyh采纳,获得10
7秒前
七昂完成签到,获得积分10
7秒前
wanwu完成签到,获得积分10
7秒前
Ta沓如流星完成签到,获得积分10
7秒前
Jasper应助songvv采纳,获得10
7秒前
8秒前
爆米花应助黑大帅vip采纳,获得10
8秒前
8秒前
顾矜应助科研小白白采纳,获得10
9秒前
葉12138发布了新的文献求助10
9秒前
9秒前
camellia完成签到 ,获得积分10
9秒前
9秒前
略略略发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
莹莹莹爱睡觉完成签到,获得积分20
10秒前
Lucas应助若雨蒙采纳,获得10
12秒前
12秒前
脑洞疼应助zzz采纳,获得10
13秒前
danti发布了新的文献求助10
13秒前
hh发布了新的文献求助10
13秒前
14秒前
江浪浪发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
kk发布了新的文献求助10
15秒前
小蘑菇应助史道夫采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825