Easy-Net: A Lightweight Building Extraction Network Based on Building Features

计算机科学 萃取(化学) 人工智能 化学 色谱法
作者
Huaigang Huang,Jiabin Liu,Ruisheng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2023.3348102
摘要

The efficient, accurate, and automatic extraction of buildings from remote sensing imagery is a key task in the intelligent extraction of remote sensing information owing to its importance in applications including urban planning, change detection, and unmanned aerial vehicle (UAV) navigation. However, the fast and accurate extraction of buildings from remote sensing images remains difficult owing to the complex, variable nature of geographic information, and variable external appearances of buildings. This is because many existing building extraction networks fail to incorporate building features into their design. Also, generally, simple lightweight networks do not accurately identify buildings, while large complex networks have high operational costs. Therefore, in this article, we proposed a simple, effective feature fusion strategy based on the building features extracted by the lightweight backbone network; also we have improved the feature fusion performance by combining the advantages of a convolutional neural network (CNN) and transformer; and presented the lightweight building extraction network called Easy-Net. We conducted experiments comparing Easy-Net with existing high-performing networks on the public dataset WHU and self-made datasets; results showed the efficiency and accuracy of our method in the task of building extraction from remote sensing images. Thus, Easy-Net was found to be a promising alternative to existing building extraction networks. Code has been released at: github.com/teddy132/EasyNet_for_building_extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ED应助sweet采纳,获得10
刚刚
小仙发布了新的文献求助10
1秒前
华天九四发布了新的文献求助20
1秒前
1秒前
Hello应助Lin采纳,获得10
1秒前
banbieshenlu发布了新的文献求助10
2秒前
3秒前
3秒前
cxx完成签到,获得积分20
3秒前
LYY完成签到,获得积分20
4秒前
熊涛发布了新的文献求助10
4秒前
4秒前
爆米花应助苯巴比妥不妥采纳,获得10
4秒前
领导范儿应助zyc1111111采纳,获得10
5秒前
Wenhao关注了科研通微信公众号
5秒前
SciGPT应助sky采纳,获得10
6秒前
7秒前
7秒前
濮阳半蕾完成签到,获得积分10
7秒前
hss完成签到,获得积分10
7秒前
小笼包发布了新的文献求助10
7秒前
眼睛大雨筠应助xiaotouming采纳,获得30
8秒前
8秒前
霸气的半邪完成签到,获得积分10
8秒前
脑洞疼应助imchenyin采纳,获得10
8秒前
cxx发布了新的文献求助10
8秒前
8秒前
8秒前
ED应助zk001采纳,获得10
9秒前
JamesPei应助zk001采纳,获得30
9秒前
怕孤独的云朵完成签到,获得积分10
10秒前
xuxuxuxu发布了新的文献求助20
10秒前
123完成签到,获得积分10
11秒前
美满平灵完成签到,获得积分20
11秒前
FashionBoy应助北酱采纳,获得10
11秒前
杨书朋发布了新的文献求助10
11秒前
华仔应助小飞飞采纳,获得10
12秒前
昭谏完成签到,获得积分10
12秒前
hss发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180