CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors

接收机工作特性 无线电技术 医学 队列 机器学习 人工智能 威尔科克森符号秩检验 卵巢癌 支持向量机 回顾性队列研究 曼惠特尼U检验 阶段(地层学) 计算机科学 放射科 癌症 病理 内科学 古生物学 生物
作者
Jia Chen,Lei Liu,Ziying He,Danke Su,Chanzhen Liu
标识
DOI:10.1007/s10278-023-00903-z
摘要

To explore the value of CT-based radiomics model in the differential diagnosis of benign ovarian tumors (BeOTs), borderline ovarian tumors (BOTs), and early malignant ovarian tumors (eMOTs). The retrospective research was conducted with pathologically confirmed 258 ovarian tumor patients from January 2014 to February 2021. The patients were randomly allocated to a training cohort (n = 198) and a test cohort (n = 60). By providing a three-dimensional (3D) characterization of the volume of interest (VOI) at the maximum level of images, 4238 radiomic features were extracted from the VOI per patient. The Wilcoxon–Mann–Whitney (WMW) test, least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were employed to select the radiomic features. Five machine learning (ML) algorithms were applied to construct three-class diagnostic models. Leave-one-out cross-validation (LOOCV) was implemented to evaluate the performance of the radiomics models. The test cohort was used to verify the generalization ability of the radiomics models. The receiver-operating characteristic (ROC) was used to evaluate diagnostic performance of radiomics model. Global and discrimination performance of five models was evaluated by average area under the ROC curve (AUC). The average ROC indicated that random forest (RF) diagnostic model in training cohort demonstrated the best diagnostic performance (micro/macro average AUC, 0.98/0.99), which was then confirmed with by LOOCV (micro/macro average AUC, 0.89/0.88) and external validation (test cohort) (micro/macro average AUC, 0.81/0.79). Our proposed CT-based radiomics diagnostic models may effectively assist in preoperatively differentiating BeOTs, BOTs, and eMOTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪秋寒完成签到 ,获得积分10
刚刚
微笑的书蝶完成签到 ,获得积分10
刚刚
leehoo完成签到,获得积分10
刚刚
刚刚
不必要再讨论适合与否完成签到,获得积分0
刚刚
刘欣完成签到,获得积分10
刚刚
xue2021完成签到,获得积分10
刚刚
他忽然的人完成签到 ,获得积分10
刚刚
英姑应助student采纳,获得10
刚刚
1秒前
MOMO完成签到,获得积分10
1秒前
黄心怡完成签到,获得积分10
1秒前
xxfsx应助小埋采纳,获得10
2秒前
jasmine完成签到,获得积分10
2秒前
ezekiet完成签到 ,获得积分10
2秒前
哈哈呵完成签到,获得积分10
3秒前
3秒前
lin完成签到,获得积分10
3秒前
ma完成签到,获得积分10
3秒前
鹿鹿完成签到,获得积分10
3秒前
嘉平三十发布了新的文献求助10
3秒前
霸气果汁完成签到,获得积分10
3秒前
April完成签到,获得积分10
4秒前
4秒前
4秒前
傻傻的夜柳完成签到 ,获得积分10
4秒前
CodeCraft应助逸风望采纳,获得10
4秒前
爆炒菜头完成签到,获得积分10
5秒前
5秒前
好运连连完成签到 ,获得积分10
5秒前
壮观的谷冬完成签到,获得积分10
5秒前
邪恶土拨鼠应助乐观的海采纳,获得10
5秒前
虔三愿驳回了Ava应助
5秒前
十六月夜完成签到,获得积分10
5秒前
song_song完成签到,获得积分10
5秒前
Quhang发布了新的文献求助10
5秒前
dengyingni发布了新的文献求助10
6秒前
tans0008完成签到,获得积分10
6秒前
小羊完成签到 ,获得积分10
6秒前
月月完成签到,获得积分10
7秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387753
求助须知:如何正确求助?哪些是违规求助? 4509705
关于积分的说明 14032376
捐赠科研通 4420535
什么是DOI,文献DOI怎么找? 2428303
邀请新用户注册赠送积分活动 1420936
关于科研通互助平台的介绍 1400119