接收机工作特性
无线电技术
医学
队列
机器学习
人工智能
威尔科克森符号秩检验
卵巢癌
支持向量机
回顾性队列研究
曼惠特尼U检验
阶段(地层学)
计算机科学
放射科
癌症
病理
内科学
古生物学
生物
作者
Jia Chen,Lei Liu,Ziying He,Danke Su,Chanzhen Liu
标识
DOI:10.1007/s10278-023-00903-z
摘要
To explore the value of CT-based radiomics model in the differential diagnosis of benign ovarian tumors (BeOTs), borderline ovarian tumors (BOTs), and early malignant ovarian tumors (eMOTs). The retrospective research was conducted with pathologically confirmed 258 ovarian tumor patients from January 2014 to February 2021. The patients were randomly allocated to a training cohort (n = 198) and a test cohort (n = 60). By providing a three-dimensional (3D) characterization of the volume of interest (VOI) at the maximum level of images, 4238 radiomic features were extracted from the VOI per patient. The Wilcoxon–Mann–Whitney (WMW) test, least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were employed to select the radiomic features. Five machine learning (ML) algorithms were applied to construct three-class diagnostic models. Leave-one-out cross-validation (LOOCV) was implemented to evaluate the performance of the radiomics models. The test cohort was used to verify the generalization ability of the radiomics models. The receiver-operating characteristic (ROC) was used to evaluate diagnostic performance of radiomics model. Global and discrimination performance of five models was evaluated by average area under the ROC curve (AUC). The average ROC indicated that random forest (RF) diagnostic model in training cohort demonstrated the best diagnostic performance (micro/macro average AUC, 0.98/0.99), which was then confirmed with by LOOCV (micro/macro average AUC, 0.89/0.88) and external validation (test cohort) (micro/macro average AUC, 0.81/0.79). Our proposed CT-based radiomics diagnostic models may effectively assist in preoperatively differentiating BeOTs, BOTs, and eMOTs.
科研通智能强力驱动
Strongly Powered by AbleSci AI