Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy

钝化 钙钛矿(结构) 光电流 材料科学 纳秒 光谱学 化学物理 载流子寿命 扩散 光电子学 超快激光光谱学 化学 纳米技术 光学 物理 结晶学 热力学 量子力学 激光器 图层(电子)
作者
Jiaxin Pan,Ziming Chen,Tiankai Zhang,Beier Hu,Haoqing Ning,Z. Meng,Zhicheng Su,Davide Nodari,Weidong Xu,Ganghong Min,Mengyun Chen,Xianjie Liu,Nicola Gasparini,Saif A. Haque,Piers R. F. Barnes,Feng Gao,Artem A. Bakulin
出处
期刊:Nature Communications [Springer Nature]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41467-023-43852-5
摘要

Conventional spectroscopies are not sufficiently selective to comprehensively understand the behaviour of trapped carriers in perovskite solar cells, particularly under their working conditions. Here we use infrared optical activation spectroscopy (i.e., pump-push-photocurrent), to observe the properties and real-time dynamics of trapped carriers within operando perovskite solar cells. We compare behaviour differences of trapped holes in pristine and surface-passivated FA0.99Cs0.01PbI3 devices using a combination of quasi-steady-state and nanosecond time-resolved pump-push-photocurrent, as well as kinetic and drift-diffusion models. We find a two-step trap-filling process: the rapid filling (~10 ns) of low-density traps in the bulk of perovskite, followed by the slower filling (~100 ns) of high-density traps at the perovskite/hole transport material interface. Surface passivation by n-octylammonium iodide dramatically reduces the number of trap states (~50 times), improving the device performance substantially. Moreover, the activation energy (~280 meV) of the dominant hole traps remains similar with and without surface passivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟大猫应助细腻白柏采纳,获得10
刚刚
白白完成签到,获得积分10
1秒前
1秒前
1秒前
安静的难破完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
飞跃完成签到,获得积分10
2秒前
2秒前
2秒前
HEIKU应助热心的早晨采纳,获得10
3秒前
xxx发布了新的文献求助10
4秒前
科研通AI5应助nuliya采纳,获得10
4秒前
kira完成签到,获得积分10
5秒前
刘星星发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
汉堡包应助LYM采纳,获得10
6秒前
吉势甘发布了新的文献求助10
6秒前
zhu应助七块采纳,获得10
7秒前
8秒前
SweepingMonk应助kkkkkw采纳,获得10
8秒前
Summer完成签到,获得积分10
8秒前
研友_VZG7GZ应助starryxm采纳,获得10
8秒前
8秒前
WilsonT发布了新的文献求助20
8秒前
3-HP完成签到,获得积分10
8秒前
8秒前
kira发布了新的文献求助10
8秒前
大个应助丸子采纳,获得10
9秒前
EiRoco_0r完成签到,获得积分10
9秒前
wendinfgmei完成签到,获得积分10
9秒前
9秒前
10秒前
小前途完成签到,获得积分10
10秒前
大方小白发布了新的文献求助10
10秒前
S1mple_gentleman完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678