材料科学
电介质
复合材料
纳米复合材料
介电损耗
热导率
复合数
纳米线
高-κ电介质
纳米技术
光电子学
作者
Li Guan,Ying Gao,Huijing Liu,Haiping Xu,Wei Xiong,Lihe Guo,Hongfei Li,George Chen
标识
DOI:10.1021/acsami.3c13359
摘要
Dielectric composites are widely used in power electronics, power systems, aerospace, and other fields due to their extremely high power density. However, if their energy density can be further increased, the application range will be greatly improved. Improving the dielectric constant of composites is one of the most effective ways to increase the energy density. In this study, a preparation method for copper calcium titanate nanowires (CCTO-NWs) with adjustable aspect ratio was investigated. Upon incorporation of these CCTO-NWs into the polymer matrix, the nanocomposites exhibit a significantly higher dielectric constant and a lower dielectric loss. In addition, a thin layer of Al2O3 with excellent thermal conductivity is coated on the surface of the CCTO-NWs to form a core–shell structure nanowire CCTO-NW@Al2O3. The introduction of the thermal conductive layer of Al2O3 not only creates a continuous heat transfer path within the dielectric composite, increasing the thermal conductivity of the composite from 0.11 W/(m·K) of pure HIPS to 1.12 W/(m·K), but also serves as a buffer layer between HIPS and CCTO-NWs, effectively alleviating the electric field distortion caused by the large difference in the dielectric constant between them, thereby optimizing the dielectric properties of the composite and reducing the dielectric permeability threshold from 30 to 20 vol %. This work provides an effective strategy for synergistically improving the dielectric constant and thermal conductivity of dielectric composites while also taking into account the good flexibility of polymer/ceramic nanocomposites.
科研通智能强力驱动
Strongly Powered by AbleSci AI