A fine-grained orthodontics segmentation model for 3D intraoral scan data

分割 计算机科学 邻接表 人工智能 光学(聚焦) 三维模型 口腔正畸科 模式识别(心理学) 医学 算法 物理 光学
作者
Juncheng Li,Bodong Cheng,Nifang Niu,Guangwei Gao,Shihui Ying,Jun Shi,Tieyong Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107821-107821 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107821
摘要

With the widespread application of digital orthodontics in the diagnosis and treatment of oral diseases, more and more researchers focus on the accurate segmentation of teeth from intraoral scan data. The accuracy of the segmentation results will directly affect the follow-up diagnosis of dentists. Although the current research on tooth segmentation has achieved promising results, the 3D intraoral scan datasets they use are almost all indirect scans of plaster models, and only contain limited samples of abnormal teeth, so it is difficult to apply them to clinical scenarios under orthodontic treatment. The current issue is the lack of a unified and standardized dataset for analyzing and validating the effectiveness of tooth segmentation. In this work, we focus on deformed teeth segmentation and provide a fine-grained tooth segmentation dataset (3D-IOSSeg). The dataset consists of 3D intraoral scan data from more than 200 patients, with each sample labeled with a fine-grained mesh unit. Meanwhile, 3D-IOSSeg meticulously classified every tooth in the upper and lower jaws. In addition, we propose a fast graph convolutional network for 3D tooth segmentation named Fast-TGCN. In the model, the relationship between adjacent mesh cells is directly established by the naive adjacency matrix to better extract the local geometric features of the tooth. Extensive experiments show that Fast-TGCN can quickly and accurately segment teeth from the mouth with complex structures and outperforms other methods in various evaluation metrics. Moreover, we present the results of multiple classical tooth segmentation methods on this dataset, providing a comprehensive analysis of the field. All code and data will be available at https://github.com/MIVRC/Fast-TGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyqy完成签到 ,获得积分10
1秒前
马户牙发布了新的文献求助10
1秒前
shetianlang发布了新的文献求助10
1秒前
黄卡卡发布了新的文献求助10
2秒前
科目三应助服部平次采纳,获得10
2秒前
2秒前
2秒前
顾北完成签到,获得积分10
3秒前
4秒前
zhao完成签到,获得积分10
4秒前
冷酷孤风完成签到,获得积分10
6秒前
7秒前
8秒前
雨濛濛发布了新的文献求助10
8秒前
失眠的万言完成签到,获得积分10
8秒前
司徒盼晴完成签到,获得积分20
9秒前
烟花应助宋声声采纳,获得10
10秒前
Abelsci完成签到,获得积分0
10秒前
10秒前
Nancy-nan发布了新的文献求助30
11秒前
刘雯发布了新的文献求助10
11秒前
12秒前
kingkingmai完成签到 ,获得积分10
14秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
欣慰代亦应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
Sssssss应助科研通管家采纳,获得30
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
red完成签到,获得积分10
15秒前
传奇3应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
丰知然应助科研通管家采纳,获得40
16秒前
852应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455021
求助须知:如何正确求助?哪些是违规求助? 3050304
关于积分的说明 9020908
捐赠科研通 2738923
什么是DOI,文献DOI怎么找? 1502343
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693191