Recovery mechanisms of shale oil by CO2 injection in organic and inorganic nanopores from molecular perspective

干酪根 纳米孔 油页岩 吸附 材料科学 化学工程 聚结(物理) 打滑(空气动力学) 粘度 石英 纳米技术 矿物学 化学 地质学 复合材料 有机化学 烃源岩 热力学 古生物学 工程类 物理 构造盆地 天体生物学
作者
Wei Zhang,Cheng Dai,Zhiqiang Chen,Yingfu He,Sen Wang
出处
期刊:Journal of Molecular Liquids [Elsevier BV]
卷期号:398: 124276-124276 被引量:10
标识
DOI:10.1016/j.molliq.2024.124276
摘要

CO2 injection is the feasible method to enhance shale oil recovery and has attracted extensive attention in recent years. Since shale reservoir has omnipresent nanoscale pores, understanding the underlying CO2-EOR mechanisms at the nanoscale is of critical importance. In this work, we study the structural and dynamic properties of CO2/nC8 systems in organic kerogen and inorganic quartz nanopores by molecular dynamic simulation and clarify the dominant EOR mechanisms of CO2 injection in various mineral nanopores. We find a large positive slip velocity occurs when single-phase nC8 flows in quartz nanopore while it is no-slip boundary condition in kerogen nanopore. The CO2-regulated nC8 in quartz nanopore is the joint effect of slip, competitive adsorption and viscosity reduction. In the first stage, CO2 extracts the first adsorption layer of nC8 by competitive adsorption and forms a CO2 film on the quartz surface. The CO2 film reduces the slip velocity between nC8 and quartz surface and weakens the nC8 flow capacity. After CO2 adsorption is saturated, the CO2 mixes with nC8 in all flow regions and the effective viscosity of nC8 starts decreasing at this stage. The flow capacity of nC8 rises dramatically due to the viscosity reduction mechanism of CO2. In kerogen nanopore, it is no-slip boundary condition and CO2 mixes with nC8 in all flow regions directly instead of preferably adsorbed on the surface. Viscosity reduction is the dominant mechanism to affect nC8 flow behavior and nC8 flow capacity is enhanced monotonically as CO2 injection. Our study advances the understanding of the recovery mechanisms of shale oil by CO2 injection on nanoscale and provides the theoretical foundation for the optimization of CO2-EOR in shale oil reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
Yang应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
C17完成签到,获得积分20
1秒前
ttgx完成签到,获得积分10
1秒前
2秒前
淡定的勒发布了新的文献求助10
2秒前
if_tiand完成签到,获得积分10
2秒前
于生有你发布了新的文献求助10
2秒前
captain_sir完成签到 ,获得积分10
2秒前
Tian完成签到,获得积分10
3秒前
Akim应助YaoHui采纳,获得10
3秒前
伶俐如冰发布了新的文献求助10
3秒前
竹本完成签到 ,获得积分10
3秒前
4秒前
英俊的铭应助yiyi采纳,获得10
4秒前
4秒前
5秒前
大个应助lss采纳,获得10
5秒前
wwz应助12138采纳,获得10
6秒前
wwz应助一城烟雨采纳,获得10
6秒前
Hwj完成签到,获得积分10
6秒前
6秒前
吴倩完成签到,获得积分10
6秒前
在水一方应助帅狗采纳,获得10
7秒前
7秒前
7秒前
WXQ发布了新的文献求助10
8秒前
8秒前
今后应助清秀代天采纳,获得10
8秒前
runfen完成签到,获得积分10
8秒前
香蕉觅云应助伴风望海采纳,获得10
9秒前
captain_sir关注了科研通微信公众号
9秒前
9秒前
111完成签到 ,获得积分10
9秒前
南宫无血完成签到,获得积分10
10秒前
yy完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260026
求助须知:如何正确求助?哪些是违规求助? 4421555
关于积分的说明 13763412
捐赠科研通 4295658
什么是DOI,文献DOI怎么找? 2356980
邀请新用户注册赠送积分活动 1353341
关于科研通互助平台的介绍 1314535