Recovery mechanisms of shale oil by CO2 injection in organic and inorganic nanopores from molecular perspective

干酪根 纳米孔 油页岩 吸附 材料科学 化学工程 聚结(物理) 打滑(空气动力学) 粘度 石英 纳米技术 矿物学 化学 地质学 复合材料 有机化学 烃源岩 热力学 古生物学 工程类 物理 构造盆地 天体生物学
作者
Wei Zhang,Cheng Dai,Zhiqiang Chen,Yingfu He,Sen Wang
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:398: 124276-124276 被引量:10
标识
DOI:10.1016/j.molliq.2024.124276
摘要

CO2 injection is the feasible method to enhance shale oil recovery and has attracted extensive attention in recent years. Since shale reservoir has omnipresent nanoscale pores, understanding the underlying CO2-EOR mechanisms at the nanoscale is of critical importance. In this work, we study the structural and dynamic properties of CO2/nC8 systems in organic kerogen and inorganic quartz nanopores by molecular dynamic simulation and clarify the dominant EOR mechanisms of CO2 injection in various mineral nanopores. We find a large positive slip velocity occurs when single-phase nC8 flows in quartz nanopore while it is no-slip boundary condition in kerogen nanopore. The CO2-regulated nC8 in quartz nanopore is the joint effect of slip, competitive adsorption and viscosity reduction. In the first stage, CO2 extracts the first adsorption layer of nC8 by competitive adsorption and forms a CO2 film on the quartz surface. The CO2 film reduces the slip velocity between nC8 and quartz surface and weakens the nC8 flow capacity. After CO2 adsorption is saturated, the CO2 mixes with nC8 in all flow regions and the effective viscosity of nC8 starts decreasing at this stage. The flow capacity of nC8 rises dramatically due to the viscosity reduction mechanism of CO2. In kerogen nanopore, it is no-slip boundary condition and CO2 mixes with nC8 in all flow regions directly instead of preferably adsorbed on the surface. Viscosity reduction is the dominant mechanism to affect nC8 flow behavior and nC8 flow capacity is enhanced monotonically as CO2 injection. Our study advances the understanding of the recovery mechanisms of shale oil by CO2 injection on nanoscale and provides the theoretical foundation for the optimization of CO2-EOR in shale oil reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuzhong完成签到,获得积分10
1秒前
昏睡的柜子完成签到,获得积分10
1秒前
Planck发布了新的文献求助10
1秒前
3秒前
能谱曲线完成签到,获得积分10
3秒前
creed完成签到,获得积分20
4秒前
zfd发布了新的文献求助10
4秒前
微光熠发布了新的文献求助10
4秒前
我是老大应助QINGLAN采纳,获得10
4秒前
hyt发布了新的文献求助10
5秒前
团子发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
轨迹应助科研通管家采纳,获得50
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Wind应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Return应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
胡子西瓜完成签到,获得积分10
7秒前
cherish完成签到,获得积分10
7秒前
含蓄大雁完成签到,获得积分10
7秒前
seemefly完成签到,获得积分10
7秒前
凡雁完成签到,获得积分10
7秒前
8秒前
繁星jia完成签到 ,获得积分10
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277