Deep Reinforcement Learning With Multicritic TD3 for Decentralized Multirobot Path Planning

计算机科学 强化学习 运动规划 路径(计算) 钢筋 分布式计算 人工智能 计算机网络 机器人 工程类 结构工程
作者
Heqing Yin,Chang Wang,Chao Yan,Xiaojia Xiang,Boliang Cai,Changyun Wei
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1233-1247 被引量:2
标识
DOI:10.1109/tcds.2024.3368055
摘要

Centralized multi-robot path planning is a prevalent approach involving a global planner computing feasible paths for each robot using shared information. Nonetheless, this approach encounters limitations due to communication constraints and computational complexity. To address these challenges, we introduce a novel decentralized multi-robot path planning approach that eliminates the need for sharing the states and intentions of robots. Our approach harnesses deep reinforcement learning and features an asynchronous multi-critic twin delayed deep deterministic policy gradient (AMC-TD3) algorithm, which enhances the original GRU-Attention based TD3 algorithm by incorporating a multi-critic network and employing an asynchronous training mechanism.

By training each critic with a unique reward function, our learned policy enables each robot to navigate towards its long-term objective without colliding with other robots in complex environments. Furthermore, our reward function, grounded in social norms, allows the robots to naturally avoid each other in congested situations. Specifically, we train three critics to encourage each robot to achieve its long-term navigation goal, maintain its moving direction, and prevent collisions with other robots.

Our model can learn an end-to-end navigation policy without relying on an accurate map or any localization information, rendering it highly adaptable to various environments. Simulation results reveal that our proposed approach surpasses baselines in several environments with different levels of complexity and robot populations.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYN发布了新的文献求助10
刚刚
1秒前
zydxyx完成签到,获得积分10
2秒前
wuniuniu发布了新的文献求助10
4秒前
6秒前
哈哈哈完成签到,获得积分10
8秒前
田様应助哈登采纳,获得10
9秒前
宝时捷发布了新的文献求助50
10秒前
qqqxl完成签到,获得积分10
10秒前
11秒前
easonfan发布了新的文献求助30
14秒前
Ren应助Pikno123采纳,获得10
15秒前
安详的惜梦完成签到 ,获得积分10
18秒前
18秒前
斯文败类应助等待的花生采纳,获得10
18秒前
20秒前
星辉完成签到 ,获得积分10
20秒前
Zziiixl发布了新的文献求助10
23秒前
syvshc给巧兮的求助进行了留言
23秒前
Niercol完成签到,获得积分10
27秒前
28秒前
李健应助大方语风采纳,获得10
29秒前
lululala发布了新的文献求助10
29秒前
爱撒娇的紫菜完成签到,获得积分10
33秒前
SciGPT应助卿卿采纳,获得10
33秒前
34秒前
lululala完成签到,获得积分10
36秒前
36秒前
lulu828完成签到,获得积分10
37秒前
友好白凡发布了新的文献求助10
39秒前
善学以致用应助呃呃呃c采纳,获得30
40秒前
科研通AI5应助kong采纳,获得10
40秒前
SYLH应助科研通管家采纳,获得10
42秒前
可爱的函函应助思维隋采纳,获得10
42秒前
清爽乐菱应助科研通管家采纳,获得30
42秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
Lucas应助科研通管家采纳,获得10
43秒前
Orange应助科研通管家采纳,获得10
43秒前
隐形曼青应助科研通管家采纳,获得10
43秒前
SYLH应助科研通管家采纳,获得10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629