已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Reinforcement Learning With Multicritic TD3 for Decentralized Multirobot Path Planning

计算机科学 强化学习 运动规划 路径(计算) 钢筋 分布式计算 人工智能 计算机网络 机器人 工程类 结构工程
作者
Heqing Yin,Chang Wang,Chao Yan,Xiaojia Xiang,Boliang Cai,Changyun Wei
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1233-1247
标识
DOI:10.1109/tcds.2024.3368055
摘要

Centralized multi-robot path planning is a prevalent approach involving a global planner computing feasible paths for each robot using shared information. Nonetheless, this approach encounters limitations due to communication constraints and computational complexity. To address these challenges, we introduce a novel decentralized multi-robot path planning approach that eliminates the need for sharing the states and intentions of robots. Our approach harnesses deep reinforcement learning and features an asynchronous multi-critic twin delayed deep deterministic policy gradient (AMC-TD3) algorithm, which enhances the original GRU-Attention based TD3 algorithm by incorporating a multi-critic network and employing an asynchronous training mechanism.

By training each critic with a unique reward function, our learned policy enables each robot to navigate towards its long-term objective without colliding with other robots in complex environments. Furthermore, our reward function, grounded in social norms, allows the robots to naturally avoid each other in congested situations. Specifically, we train three critics to encourage each robot to achieve its long-term navigation goal, maintain its moving direction, and prevent collisions with other robots.

Our model can learn an end-to-end navigation policy without relying on an accurate map or any localization information, rendering it highly adaptable to various environments. Simulation results reveal that our proposed approach surpasses baselines in several environments with different levels of complexity and robot populations.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒恋风发布了新的文献求助10
1秒前
somnus_fu完成签到,获得积分10
2秒前
3秒前
zzbbzz完成签到,获得积分20
3秒前
慕青应助树叶有专攻采纳,获得10
6秒前
zzbbzz发布了新的文献求助30
7秒前
7秒前
Hello应助专注的月亮采纳,获得10
8秒前
科研通AI2S应助刘笨笨采纳,获得10
10秒前
ljh完成签到 ,获得积分10
10秒前
10秒前
11秒前
liqin_wu完成签到,获得积分20
12秒前
司徒恋风完成签到,获得积分20
13秒前
郭先生发布了新的文献求助10
13秒前
gc发布了新的文献求助10
15秒前
16秒前
19秒前
大方岂愈发布了新的文献求助10
19秒前
21秒前
22秒前
艾欧比发布了新的文献求助10
23秒前
23秒前
24秒前
禾叶完成签到 ,获得积分10
24秒前
狂写论文发布了新的文献求助10
26秒前
Mr.Young发布了新的文献求助10
27秒前
科研通AI2S应助小禾采纳,获得10
27秒前
Solomon完成签到 ,获得积分0
28秒前
郭先生完成签到,获得积分20
30秒前
31秒前
31秒前
今后应助第一步催化B采纳,获得10
32秒前
大方岂愈完成签到,获得积分10
32秒前
35秒前
小小猪完成签到,获得积分10
36秒前
复杂不二发布了新的文献求助10
36秒前
37秒前
靓丽的冰旋完成签到 ,获得积分10
37秒前
38秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229546
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8198010
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374437
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749