Host transcriptomics and machine learning for secondary bacterial infections in patients with COVID-19: a prospective, observational cohort study

Lasso(编程语言) 医学 队列 队列研究 观察研究 前瞻性队列研究 呼吸道感染 内科学 呼吸系统 万维网 计算机科学
作者
Meagan Carney,Tiana Maria Pelaia,Tracy Chew,Sally Teoh,Amy Phu,Karan Kim,Ya Wang,Jonathan R. Iredell,Yoann Zerbib,Anthony S. McLean,Klaus Schughart,Benjamin Tang,Maryam Shojaei,Kirsty R. Short,Meagan Carney,Tiana Maria Pelaia,Tracy Chew,Sally Teoh,Amy Phu,Karan Kim,Ya Wang,Jonathan R. Iredell,Gabriella Cirmena,Alberto Ballestrero,Allan W. Cripps,Amanda J. Cox,Andrea De Maria,Arutha Kulasinghe,Carl G. Feng,Damien Chaussabel,Darawan Rinchai,Davide Bedognetti,Gabriele Zoppoli,Gunawan Gunawan,Irani Thevarajan,Jennifer Audsley,John‐Sebastian Eden,Marcela Kralovcova,Marek Nalos,Marko Radic,Martin Matějovič,Michele Bedognetti,Miroslav Průcha,Mohammed Toufiq,Narasaraju Teluguakula,Nicholas P. West,Paolo Cremonesi,Philip N Britton,Ricardo Garcia Branco,Rostyslav Bilyy,Stephen Macdonald,Thomas Karvunidis,Tim N Kwan,Velma Herwanto,Win Sen Kuan,Yoann Zerbib,Anthony S. McLean,Klaus Schughart,Benjamin Tang,Maryam Shojaei,Kirsty R. Short
出处
期刊:The Lancet microbe [Elsevier]
卷期号:5 (3): e272-e281 被引量:2
标识
DOI:10.1016/s2666-5247(23)00363-4
摘要

Viral respiratory tract infections are frequently complicated by secondary bacterial infections. This study aimed to use machine learning to predict the risk of bacterial superinfection in SARS-CoV-2-positive individuals.In this prospective, multicentre, observational cohort study done in nine centres in six countries (Australia, Indonesia, Singapore, Italy, Czechia, and France) blood samples and RNA sequencing were used to develop a robust model of predicting secondary bacterial infections in the respiratory tract of patients with COVID-19. Eligible participants were older than 18 years, had known or suspected COVID-19, and symptoms of a recent respiratory infection. A control cohort of participants without COVID-19 who were older than 18 years and with no infection symptoms was also recruited from one Australian centre. In the pre-analysis phase, data were filtered to include only individuals with complete blood transcriptomics and patient data (ie, age, sex, location, and WHO severity score at the time of sample collection). The dataset was then divided randomly (4:1) into a training set (80%) and a test set (20%). Gene expression data in the training set and control cohort were used for differential expression analysis. Differentially expressed genes, along with WHO severity score, location, age, and sex, were used for feature selection with least absolute shrinkage and selection operator (LASSO) in the training set. For LASSO analysis, samples were excluded if gene expression data were not obtained at study admission, no longitudinal clinical information was available, a bacterial infection at the time of study admission was present, or a fungal infection in the absence of a bacterial infection was detected. LASSO regression was performed using three subsets of predictor variables: patient data alone, gene expression data alone, or a combination of patient data and gene expression data. The accuracy of the resultant models was tested on data from the test set.Between March, 2020, and October, 2021, we recruited 536 SARS-CoV-2-positive individuals and between June, 2013, and January, 2020, we recruited 74 participants into the control cohort. After prefiltering analysis and other exclusions, samples from 158 individuals were analysed in the training set and 47 in the test set. The expression of seven host genes (DAPP1, CST3, FGL2, GCH1, CIITA, UPP1, and RN7SL1) in the blood at the time of study admission was identified by LASSO as predictive of the risk of developing a secondary bacterial infection of the respiratory tract more than 24 h after study admission. Specifically, the expression of these genes in combination with a patient's WHO severity score at the time of study enrolment resulted in an area under the curve of 0·98 (95% CI 0·89-1·00), a true positive rate (sensitivity) of 1·00 (95% CI 1·00-1·00), and a true negative rate (specificity) of 0·94 (95% CI 0·89-1·00) in the test cohort. The combination of patient data and host transcriptomics at hospital admission identified all seven individuals in the training and test sets who developed a bacterial infection of the respiratory tract 5-9 days after hospital admission.These data raise the possibility that host transcriptomics at the time of clinical presentation, together with machine learning, can forward predict the risk of secondary bacterial infections and allow for the more targeted use of antibiotics in viral infection.Snow Medical Research Foundation, the National Health and Medical Research Council, the Jack Ma Foundation, the Helmholtz-Association, the A2 Milk Company, National Institute of Allergy and Infectious Disease, and the Fondazione AIRC Associazione Italiana per la Ricerca contro il Cancro.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiqifan完成签到,获得积分0
刚刚
934834发布了新的文献求助10
刚刚
雨诺发布了新的文献求助10
刚刚
1秒前
1秒前
鹿静枫完成签到,获得积分10
2秒前
liujy完成签到,获得积分10
2秒前
Amorfati发布了新的文献求助10
3秒前
小王发布了新的文献求助30
3秒前
学渣本渣发布了新的文献求助10
4秒前
科研通AI2S应助听话的白易采纳,获得10
5秒前
舒服的牛排完成签到,获得积分10
6秒前
桐桐应助雨诺采纳,获得10
7秒前
CC完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助12334采纳,获得10
8秒前
Amorfati完成签到,获得积分20
9秒前
罗又柔应助l2023采纳,获得10
11秒前
WELXCNK发布了新的文献求助10
11秒前
简Moild发布了新的文献求助10
13秒前
122完成签到,获得积分10
13秒前
深情安青应助小陈采纳,获得10
14秒前
kk完成签到,获得积分10
15秒前
15秒前
wangzh发布了新的文献求助10
16秒前
科研通AI2S应助北冥有鱼采纳,获得10
18秒前
Rita发布了新的文献求助10
19秒前
CodeCraft应助学渣本渣采纳,获得10
20秒前
20秒前
李健应助sinoatrial采纳,获得20
21秒前
22秒前
23秒前
科研通AI2S应助wangzh采纳,获得10
24秒前
wanci应助简Moild采纳,获得10
26秒前
12334发布了新的文献求助10
26秒前
科研小白发布了新的文献求助10
26秒前
CodeCraft应助风笛采纳,获得10
26秒前
博林大师发布了新的文献求助10
27秒前
晓晓来了发布了新的文献求助10
29秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145183
求助须知:如何正确求助?哪些是违规求助? 2796550
关于积分的说明 7820359
捐赠科研通 2452897
什么是DOI,文献DOI怎么找? 1305280
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449