清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning for three-dimensional segmentation of electron microscopy images of complex ceramic materials

电子显微镜 陶瓷 分割 材料科学 人工智能 纳米技术 计算机科学 光学 物理 复合材料
作者
Yu Hirabayashi,Haruka Iga,Hiroki Ogawa,Shinnosuke Tokuta,Yusuke Shimada,Akiyasu Yamamoto
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1) 被引量:6
标识
DOI:10.1038/s41524-024-01226-5
摘要

Abstract The microstructure is a critical factor governing the functionality of ceramic materials. Meanwhile, microstructural analysis of electron microscopy images of polycrystalline ceramics, which are geometrically complex and composed of countless crystal grains with porosity and secondary phases, has generally been performed manually by human experts. Objective pixel-based analysis (semantic segmentation) with high accuracy is a simple but critical step for quantifying microstructures. In this study, we apply neural network-based semantic segmentation to secondary electron images of polycrystalline ceramics obtained by three-dimensional (3D) imaging. The deep-learning-based models (e.g., fully convolutional network and U-Net) by employing a dataset based on a 3D scanning electron microscopy with a focused ion beam is found to be able to recognize defect structures characteristic of polycrystalline materials in some cases due to artifacts in electron microscopy imaging. Owing to the training images with improved depth accuracy, the accuracy evaluation function, intersection over union (IoU) values, reaches 94.6% for U-Net. These IoU values are among the highest for complex ceramics, where the 3D spatial distribution of phases is difficult to locate from a 2D image. Moreover, we employ the learned model to successfully reconstruct a 3D microstructure consisting of giga-scale voxel data in a few minutes. The resolution of a single voxel is 20 nm, which is higher than that obtained using a typical X-ray computed tomography. These results suggest that deep learning with datasets that learn depth information is essential in 3D microstructural quantifying polycrystalline ceramic materials. Additionally, developing improved segmentation models and datasets will pave the way for data assimilation into operando analysis and numerical simulations of in situ microstructures obtained experimentally and for application to process informatics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TXZ06完成签到,获得积分10
1秒前
Ava应助RC采纳,获得10
5秒前
小聪发布了新的文献求助20
11秒前
21秒前
尤里有气发布了新的文献求助10
25秒前
小聪完成签到,获得积分10
1分钟前
lovelife完成签到,获得积分10
1分钟前
1分钟前
wave8013完成签到,获得积分10
1分钟前
1分钟前
懒得起名字完成签到 ,获得积分10
1分钟前
菠萝包完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
2分钟前
狂野的含烟完成签到 ,获得积分10
2分钟前
2分钟前
RC发布了新的文献求助10
2分钟前
房天川完成签到 ,获得积分10
2分钟前
2分钟前
常有李完成签到,获得积分10
2分钟前
2分钟前
尤里有气发布了新的文献求助10
2分钟前
George完成签到 ,获得积分10
2分钟前
LIJinlin发布了新的文献求助30
2分钟前
3分钟前
3分钟前
LIJinlin完成签到,获得积分10
3分钟前
科研通AI6应助RC采纳,获得10
3分钟前
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
moonlight完成签到,获得积分10
4分钟前
随心所欲完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
hanliulaixi完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590577
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633541
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468733