Deep learning for three-dimensional segmentation of electron microscopy images of complex ceramic materials

电子显微镜 陶瓷 分割 材料科学 人工智能 纳米技术 计算机科学 光学 物理 复合材料
作者
Yu Hirabayashi,Haruka Iga,Hiroki Ogawa,Shinnosuke Tokuta,Yusuke Shimada,Akiyasu Yamamoto
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1) 被引量:6
标识
DOI:10.1038/s41524-024-01226-5
摘要

Abstract The microstructure is a critical factor governing the functionality of ceramic materials. Meanwhile, microstructural analysis of electron microscopy images of polycrystalline ceramics, which are geometrically complex and composed of countless crystal grains with porosity and secondary phases, has generally been performed manually by human experts. Objective pixel-based analysis (semantic segmentation) with high accuracy is a simple but critical step for quantifying microstructures. In this study, we apply neural network-based semantic segmentation to secondary electron images of polycrystalline ceramics obtained by three-dimensional (3D) imaging. The deep-learning-based models (e.g., fully convolutional network and U-Net) by employing a dataset based on a 3D scanning electron microscopy with a focused ion beam is found to be able to recognize defect structures characteristic of polycrystalline materials in some cases due to artifacts in electron microscopy imaging. Owing to the training images with improved depth accuracy, the accuracy evaluation function, intersection over union (IoU) values, reaches 94.6% for U-Net. These IoU values are among the highest for complex ceramics, where the 3D spatial distribution of phases is difficult to locate from a 2D image. Moreover, we employ the learned model to successfully reconstruct a 3D microstructure consisting of giga-scale voxel data in a few minutes. The resolution of a single voxel is 20 nm, which is higher than that obtained using a typical X-ray computed tomography. These results suggest that deep learning with datasets that learn depth information is essential in 3D microstructural quantifying polycrystalline ceramic materials. Additionally, developing improved segmentation models and datasets will pave the way for data assimilation into operando analysis and numerical simulations of in situ microstructures obtained experimentally and for application to process informatics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nuonuo完成签到,获得积分10
刚刚
⊙▽⊙完成签到,获得积分10
刚刚
1秒前
MHB发布了新的文献求助50
1秒前
汉堡包应助马保国123采纳,获得10
1秒前
落晨发布了新的文献求助10
1秒前
Hello应助郑开司09采纳,获得10
2秒前
Jiangnj完成签到,获得积分10
2秒前
昵称发布了新的文献求助10
3秒前
含糊发布了新的文献求助10
3秒前
搜集达人应助8564523采纳,获得10
3秒前
无限的隶发布了新的文献求助10
3秒前
不安豁发布了新的文献求助10
3秒前
www发布了新的文献求助10
4秒前
4秒前
Crystal完成签到,获得积分10
5秒前
Laus发布了新的文献求助10
5秒前
orixero应助碱性沉默采纳,获得10
5秒前
今后应助仙子狗尾巴花采纳,获得10
5秒前
tylerconan完成签到 ,获得积分10
6秒前
6秒前
英俊的铭应助隐形的易巧采纳,获得10
7秒前
独特微笑发布了新的文献求助10
7秒前
学海无涯完成签到,获得积分10
7秒前
科研小民工应助机智苗采纳,获得30
7秒前
楼梯口无头女孩完成签到,获得积分10
10秒前
10秒前
Grayball应助gg采纳,获得10
10秒前
10秒前
456发布了新的文献求助10
10秒前
11秒前
凤凰山发布了新的文献求助10
11秒前
独特的绿蝶完成签到,获得积分10
11秒前
11秒前
清歌扶酒发布了新的文献求助10
11秒前
东风完成签到,获得积分10
12秒前
13秒前
呆萌幼晴完成签到,获得积分10
13秒前
qinqiny完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762