Deep learning for three-dimensional segmentation of electron microscopy images of complex ceramic materials

电子显微镜 陶瓷 分割 材料科学 人工智能 纳米技术 计算机科学 光学 物理 复合材料
作者
Yu Hirabayashi,Haruka Iga,Hiroki Ogawa,Shinnosuke Tokuta,Yusuke Shimada,Akiyasu Yamamoto
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1)
标识
DOI:10.1038/s41524-024-01226-5
摘要

Abstract The microstructure is a critical factor governing the functionality of ceramic materials. Meanwhile, microstructural analysis of electron microscopy images of polycrystalline ceramics, which are geometrically complex and composed of countless crystal grains with porosity and secondary phases, has generally been performed manually by human experts. Objective pixel-based analysis (semantic segmentation) with high accuracy is a simple but critical step for quantifying microstructures. In this study, we apply neural network-based semantic segmentation to secondary electron images of polycrystalline ceramics obtained by three-dimensional (3D) imaging. The deep-learning-based models (e.g., fully convolutional network and U-Net) by employing a dataset based on a 3D scanning electron microscopy with a focused ion beam is found to be able to recognize defect structures characteristic of polycrystalline materials in some cases due to artifacts in electron microscopy imaging. Owing to the training images with improved depth accuracy, the accuracy evaluation function, intersection over union (IoU) values, reaches 94.6% for U-Net. These IoU values are among the highest for complex ceramics, where the 3D spatial distribution of phases is difficult to locate from a 2D image. Moreover, we employ the learned model to successfully reconstruct a 3D microstructure consisting of giga-scale voxel data in a few minutes. The resolution of a single voxel is 20 nm, which is higher than that obtained using a typical X-ray computed tomography. These results suggest that deep learning with datasets that learn depth information is essential in 3D microstructural quantifying polycrystalline ceramic materials. Additionally, developing improved segmentation models and datasets will pave the way for data assimilation into operando analysis and numerical simulations of in situ microstructures obtained experimentally and for application to process informatics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
LUJyyyy完成签到,获得积分10
1秒前
熹任发布了新的文献求助10
5秒前
sptyzl完成签到 ,获得积分10
5秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
6秒前
雷nn完成签到,获得积分10
7秒前
ding应助学术辉采纳,获得10
7秒前
8秒前
大力惜芹完成签到 ,获得积分10
9秒前
不吃香菜完成签到,获得积分10
11秒前
宁大小王子完成签到,获得积分10
14秒前
桐桐应助单薄小熊猫采纳,获得30
14秒前
14秒前
雷nn发布了新的文献求助10
15秒前
16秒前
xum完成签到,获得积分10
16秒前
蓝色条纹衫完成签到 ,获得积分10
17秒前
CipherSage应助冬天配地瓜采纳,获得10
20秒前
21秒前
21秒前
sskr发布了新的文献求助10
23秒前
24秒前
灵巧梦菲完成签到,获得积分20
26秒前
憨憨完成签到 ,获得积分10
27秒前
wanci应助waynechien采纳,获得10
27秒前
27秒前
学术辉发布了新的文献求助10
28秒前
52Hz完成签到,获得积分10
28秒前
丘比特应助王孟凡采纳,获得10
29秒前
念与惜完成签到 ,获得积分10
29秒前
ye完成签到,获得积分10
29秒前
活力雁枫完成签到,获得积分10
31秒前
124332发布了新的文献求助10
32秒前
被门夹到鸟完成签到,获得积分10
32秒前
32秒前
33秒前
我是萨比完成签到,获得积分10
33秒前
33秒前
善学以致用应助Xu采纳,获得10
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266082
求助须知:如何正确求助?哪些是违规求助? 2905920
关于积分的说明 8336023
捐赠科研通 2576326
什么是DOI,文献DOI怎么找? 1400393
科研通“疑难数据库(出版商)”最低求助积分说明 654767
邀请新用户注册赠送积分活动 633652