A Multitype Feature Perception and Refined Network for Spaceborne Infrared Ship Detection

计算机科学 人工智能 红外线的 特征(语言学) 遥感 环境科学 光学 物理 语言学 地质学 哲学
作者
Jieyu Yuan,Zhanchuan Cai,Shiyu Wang,Xiaoxi Kong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:3
标识
DOI:10.1109/tgrs.2023.3341215
摘要

Spaceborne infrared ship detection holds immense research significance in both military and civilian domains. Nonetheless, the focus of research in this field remains primarily on optical and synthetic aperture radar (SAR) images due to the confidentiality and limited accessibility of infrared data. The challenges in spaceborne ship detection arise from the long-distance capture and low signal-to-noise ratio of infrared images, which contribute to false alarm misclassifications. To handle this problem, this article concentrates on enhancing information interaction during feature extraction to discern disparities between targets and backgrounds more effectively, and we propose a multitype feature perception and refined network (MFPRN). Specifically, we propose a dual feature fusion scheme, which combines a fast Fourier (FF) module used to obtain comprehensive receptive field and a lightweight Multilayer Perceptron (MLP) applied to capture the long-range feature dependencies. Besides, we adopt a Cascade region proposal network (RPN) to leverage high-quality region proposals for the prediction head. Through the extraction of rich features and refined candidate boxes, we successfully mitigate false alarms. Experimental results illustrate that our method significantly reduces false alarms for general detectors, culminating in state-of-the-art performance as demonstrated on the public infrared ship detection dataset (ISDD) baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助科研通管家采纳,获得10
刚刚
进击的PhD应助科研通管家采纳,获得20
刚刚
梅哈发布了新的文献求助10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
科研通AI6应助闾丘剑封采纳,获得10
2秒前
开心友儿完成签到,获得积分10
3秒前
Eazin完成签到,获得积分10
3秒前
脑洞疼应助刘致远采纳,获得10
3秒前
4秒前
4秒前
大饼卷肉完成签到,获得积分10
4秒前
4秒前
绝世冰淇淋完成签到 ,获得积分10
5秒前
义气幼珊完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
7秒前
7秒前
9秒前
赵宇宙完成签到,获得积分10
9秒前
薄荷发布了新的文献求助10
9秒前
小巧的寻芹完成签到,获得积分10
9秒前
Runing完成签到,获得积分10
9秒前
慕青应助小小新采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666162
求助须知:如何正确求助?哪些是违规求助? 4879499
关于积分的说明 15116271
捐赠科研通 4825301
什么是DOI,文献DOI怎么找? 2583190
邀请新用户注册赠送积分活动 1537255
关于科研通互助平台的介绍 1495523