A Multitype Feature Perception and Refined Network for Spaceborne Infrared Ship Detection

计算机科学 人工智能 红外线的 特征(语言学) 遥感 环境科学 光学 物理 语言学 地质学 哲学
作者
Jieyu Yuan,Zhanchuan Cai,Shiyu Wang,Xiaoxi Kong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:3
标识
DOI:10.1109/tgrs.2023.3341215
摘要

Spaceborne infrared ship detection holds immense research significance in both military and civilian domains. Nonetheless, the focus of research in this field remains primarily on optical and synthetic aperture radar (SAR) images due to the confidentiality and limited accessibility of infrared data. The challenges in spaceborne ship detection arise from the long-distance capture and low signal-to-noise ratio of infrared images, which contribute to false alarm misclassifications. To handle this problem, this article concentrates on enhancing information interaction during feature extraction to discern disparities between targets and backgrounds more effectively, and we propose a multitype feature perception and refined network (MFPRN). Specifically, we propose a dual feature fusion scheme, which combines a fast Fourier (FF) module used to obtain comprehensive receptive field and a lightweight Multilayer Perceptron (MLP) applied to capture the long-range feature dependencies. Besides, we adopt a Cascade region proposal network (RPN) to leverage high-quality region proposals for the prediction head. Through the extraction of rich features and refined candidate boxes, we successfully mitigate false alarms. Experimental results illustrate that our method significantly reduces false alarms for general detectors, culminating in state-of-the-art performance as demonstrated on the public infrared ship detection dataset (ISDD) baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
小左完成签到,获得积分10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
1秒前
奋斗的夏柳完成签到 ,获得积分10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
和谐越彬完成签到,获得积分10
2秒前
奶奶的龙应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
小吉麻麻发布了新的文献求助10
2秒前
喜东东应助科研通管家采纳,获得50
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
123456qi发布了新的文献求助10
2秒前
天思完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
猪猪hero应助心灵美迎夏采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
小蘑菇应助心灵美迎夏采纳,获得30
2秒前
wanci应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853