Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm

萤火虫算法 萤火虫协议 粒子群优化 多群优化 计算机科学 地下水 群体行为 算法 数学优化 环境科学 人工智能 数学 工程类 岩土工程 生物 动物
作者
Sandeep Samantaray,Abinash Sahoo,Falguni Baliarsingh
标识
DOI:10.1016/j.clwat.2024.100003
摘要

The demand for water resources has increased due to rapid increase of metropolitan areas brought on by growth in population and industrialisation. In addition, the groundwater recharge is being afftected by shifting land use pattern caused by urban development. Using precise and trustworthy estimates of groundwater level is vital for the sustainable groundwater resources management in the face of changing climatic circumstances. In this context, machine learning (ML) methods offer a new and promising approach for accurately forecasting long-term changes in the groundwater level (GWL) without computational effort of developing a comprehensive flow model. In order to simulate GWL, five data-driven (DD) models, including the hybridization of support vector regression (SVR) with two optimisation algorithms i.e., firefly algorithm and particle swarm optimisation (FFAPSO), SVR-FFA, SVR-PSO, SVR and Multilayer perception (MLP), have been examined in the present study. Spatial clustering was utilised to choose four observation wells within Cuttack district in order to study and assess the water levels. Six scenarios were created by incorporating numerous variables, such as GWL in the previous months, evapotranspiration, temperature, precipitation, and river discharge. The goal was to identify the variables that were most efficient in predicting GWL. The SVR-FFAPSO model performs best in GWL forecasting for Khuntuni station, according to the quantitative analysis with correlation coefficient (R) = 0.9978, Nash–Sutcliffe efficiency (NSE) = 0.9933, mean absolute error (MAE) = 0.00025 (m), root mean squared error (RMSE) = 0.00775 (m) during the training phase. It is advised that groundwater monitoring network and data collecting system are strengthen in India for ensuring effective modelling of long-term management of groundwater resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花粉过敏发布了新的文献求助10
刚刚
明月发布了新的文献求助30
刚刚
酚酞v发布了新的文献求助10
1秒前
Liam发布了新的文献求助10
1秒前
1秒前
娇气的笑蓝完成签到,获得积分10
1秒前
默默的枫叶完成签到,获得积分10
1秒前
2秒前
2秒前
Ava应助hollow采纳,获得10
2秒前
renshiq应助坚定自信采纳,获得10
2秒前
王顺喜发布了新的文献求助10
5秒前
panda发布了新的文献求助10
6秒前
7秒前
8秒前
夏天无发布了新的文献求助10
9秒前
10秒前
11秒前
Hyccccc发布了新的文献求助10
12秒前
13秒前
Selenge发布了新的文献求助10
13秒前
14秒前
科研通AI2S应助每天都很忙采纳,获得10
14秒前
卡夫卡漫步完成签到,获得积分10
14秒前
ddd关注了科研通微信公众号
14秒前
今后应助独特的沛儿采纳,获得10
15秒前
Mlingji完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
16秒前
mmyhn发布了新的文献求助10
16秒前
17秒前
wy发布了新的文献求助10
17秒前
19秒前
Mlingji发布了新的文献求助10
20秒前
ZrAug21发布了新的文献求助30
22秒前
无忧蝴蝶发布了新的文献求助30
22秒前
CipherSage应助方强采纳,获得10
23秒前
594778089发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124390
求助须知:如何正确求助?哪些是违规求助? 2774743
关于积分的说明 7723567
捐赠科研通 2430180
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622006
版权声明 600297