Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm

萤火虫算法 萤火虫协议 粒子群优化 多群优化 计算机科学 地下水 群体行为 算法 数学优化 环境科学 人工智能 数学 工程类 岩土工程 生物 动物
作者
Sandeep Samantaray,Abinash Sahoo,Falguni Baliarsingh
标识
DOI:10.1016/j.clwat.2024.100003
摘要

The demand for water resources has increased due to rapid increase of metropolitan areas brought on by growth in population and industrialisation. In addition, the groundwater recharge is being afftected by shifting land use pattern caused by urban development. Using precise and trustworthy estimates of groundwater level is vital for the sustainable groundwater resources management in the face of changing climatic circumstances. In this context, machine learning (ML) methods offer a new and promising approach for accurately forecasting long-term changes in the groundwater level (GWL) without computational effort of developing a comprehensive flow model. In order to simulate GWL, five data-driven (DD) models, including the hybridization of support vector regression (SVR) with two optimisation algorithms i.e., firefly algorithm and particle swarm optimisation (FFAPSO), SVR-FFA, SVR-PSO, SVR and Multilayer perception (MLP), have been examined in the present study. Spatial clustering was utilised to choose four observation wells within Cuttack district in order to study and assess the water levels. Six scenarios were created by incorporating numerous variables, such as GWL in the previous months, evapotranspiration, temperature, precipitation, and river discharge. The goal was to identify the variables that were most efficient in predicting GWL. The SVR-FFAPSO model performs best in GWL forecasting for Khuntuni station, according to the quantitative analysis with correlation coefficient (R) = 0.9978, Nash–Sutcliffe efficiency (NSE) = 0.9933, mean absolute error (MAE) = 0.00025 (m), root mean squared error (RMSE) = 0.00775 (m) during the training phase. It is advised that groundwater monitoring network and data collecting system are strengthen in India for ensuring effective modelling of long-term management of groundwater resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
初吻还在发布了新的文献求助10
1秒前
哇哦发布了新的文献求助10
2秒前
李唯佳发布了新的文献求助10
2秒前
2秒前
酷波er应助渊思采纳,获得10
2秒前
2秒前
罗mian完成签到,获得积分10
3秒前
3秒前
WUJIAYU完成签到 ,获得积分10
4秒前
小蘑菇应助小汤圆采纳,获得10
5秒前
认真的小熊饼干完成签到,获得积分10
5秒前
Grayball应助蒙开心采纳,获得10
5秒前
5秒前
真开心完成签到,获得积分10
5秒前
Ava应助点点采纳,获得10
5秒前
Seldomyg完成签到 ,获得积分10
6秒前
鲸是海蓝色关注了科研通微信公众号
6秒前
南亭完成签到,获得积分10
6秒前
Orange应助o10采纳,获得10
7秒前
7秒前
7秒前
小王发布了新的文献求助10
8秒前
初吻还在完成签到,获得积分10
9秒前
MADKAI发布了新的文献求助10
9秒前
Asss完成签到,获得积分10
9秒前
9秒前
时光友岸完成签到,获得积分10
10秒前
11秒前
昭昭完成签到,获得积分10
11秒前
niu1完成签到,获得积分10
12秒前
铃兰完成签到,获得积分10
12秒前
尘尘完成签到,获得积分10
12秒前
13秒前
yan完成签到,获得积分20
13秒前
13秒前
小鹿斑比完成签到 ,获得积分10
14秒前
洛洛完成签到 ,获得积分10
14秒前
浮华乱世完成签到 ,获得积分10
14秒前
otaro完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672