Transitioning from static to suspension culture system for large‐scale production of xeno‐free extracellular vesicles derived from mesenchymal stromal cells

间充质干细胞 细胞培养 悬挂(拓扑) 细胞外 化学 小泡 悬浮培养 比例(比率) 间质细胞 细胞外小泡 生物 细胞生物学 生物化学 物理 数学 同伦 量子力学 遗传学 癌症研究 纯数学
作者
Natália Cristine Dias dos Santos,Paula Bruzadelle Vieira,Nádia de Cássia Noronha,Amanda Mizukami,Maristela Delgado Orellana,Maria Vitória Lopes Badra Bentley,Dimas Tadeu Covas,Kamilla Swiech,Kelen Cristina Ribeiro Malmegrim
出处
期刊:Biotechnology Progress [Wiley]
卷期号:40 (3)
标识
DOI:10.1002/btpr.3419
摘要

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring. In this study, we reported the establishment of a scalable bioprocess to produce MSC-EV in suspension cultures using spinner flasks and human collagen-coated microcarriers (3D culture system). We compared the EV production in this 3D culture system with the standard static culture using T-flasks (2D culture system). The EV produced in both systems were characterized and quantify by western blotting and nanoparticle tracking analysis. The presence of the typical protein markers CD9, CD63, and CD81 was confirmed by western blotting analyses for EV produced in both culture systems. The cell fold-increase was 5.7-fold for the 3D culture system and 4.6-fold for the 2D culture system, signifying a fold-change of 1.2 (calculated as the ratio of fold-increase 3D to fold-increase 2D). Furthermore, it should be noted that the total cell production in the spinner flask cultures was 4.8 times higher than that in T-flask cultures. The total cell production in the spinner flask cultures was 5.2-fold higher than that in T-flask cultures. While the EV specific production (particles/cell) in T-flask cultures (4.40 ± 1.21 × 10
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲的盼夏完成签到,获得积分10
刚刚
FashionBoy应助清新采纳,获得10
刚刚
刚刚
刚刚
别凡完成签到,获得积分10
1秒前
随意完成签到,获得积分10
2秒前
3秒前
QI完成签到,获得积分10
3秒前
qiao发布了新的文献求助10
4秒前
4秒前
不如看海发布了新的文献求助10
5秒前
今后应助宸一采纳,获得10
5秒前
6秒前
自然怀寒完成签到,获得积分10
7秒前
科研通AI5应助yhb采纳,获得10
9秒前
极地东风完成签到,获得积分10
9秒前
9秒前
qiao完成签到,获得积分10
10秒前
QI发布了新的文献求助10
10秒前
jywang完成签到,获得积分20
11秒前
11秒前
fangzheng完成签到,获得积分10
11秒前
11秒前
脑洞疼应助李东哲采纳,获得10
12秒前
12秒前
online1881完成签到,获得积分10
12秒前
13秒前
期待发布了新的文献求助10
13秒前
14秒前
大个应助AI采纳,获得10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
怕黑道消完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512208
求助须知:如何正确求助?哪些是违规求助? 3094667
关于积分的说明 9224183
捐赠科研通 2789467
什么是DOI,文献DOI怎么找? 1530709
邀请新用户注册赠送积分活动 711048
科研通“疑难数据库(出版商)”最低求助积分说明 706518