A domain adversarial graph convolutional network for intelligent monitoring of tool wear in machine tools

机械加工 计算机科学 刀具磨损 图形 领域(数学分析) 机器学习 机床 数据挖掘 人工智能 工程类 理论计算机科学 机械工程 数学 数学分析
作者
Kai Li,Zhou-Long Li,Xianshi Jia,Lei Liu,Mingsong Chen
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:187: 109795-109795 被引量:13
标识
DOI:10.1016/j.cie.2023.109795
摘要

The prediction of tool wear on CNC machine tools holds great significance for enhancing both the safety of tool machining and the quality of product machining. The current data-driven prediction methods for tool wear in machining have yielded very promising results. However, tool wear prediction models for the same machine tool under different machining conditions lack universality since the data feature space distribution under varying work conditions is different. To bridge the gap between source and target domains, data structure information is all too commonly ignored beyond domain and class labels. To attack these problems, a transfer learning method for acquiring domain-invariant features of tool wear based on a dynamic domain adversarial graph convolutional network (DDAGCN) is proposed in this paper. The network integrates three effective alignment mechanisms - domain, data structure, and class centroid alignments - and evaluates the relative importance of the marginal and conditional distributions quantitatively. In addition, a dynamic factor is introduced to quantitatively assess the relative significance of marginal and conditional distributions, which effectively facilitate the learning of domain-invariant features and decrease differences between source and target domains. The superiority of the proposed method was validated through experiments under two distinct conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助wangjue采纳,获得10
刚刚
1秒前
1秒前
逸之狐应助河师大采纳,获得20
1秒前
超越好帅发布了新的文献求助10
4秒前
喏晨完成签到 ,获得积分10
5秒前
6秒前
yuan完成签到 ,获得积分10
7秒前
10秒前
10秒前
11秒前
12秒前
一团发布了新的文献求助10
13秒前
13秒前
fairy完成签到,获得积分20
14秒前
所所应助狮子采纳,获得10
14秒前
wangjue发布了新的文献求助10
15秒前
ddm发布了新的文献求助10
15秒前
lf发布了新的文献求助30
17秒前
量子星尘发布了新的文献求助10
19秒前
jianglili发布了新的文献求助10
19秒前
干净访烟完成签到,获得积分20
21秒前
Lucas应助科研通管家采纳,获得10
22秒前
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
22秒前
Singularity应助科研通管家采纳,获得10
22秒前
吴垚应助科研通管家采纳,获得10
22秒前
May应助科研通管家采纳,获得20
23秒前
852应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
iNk应助科研通管家采纳,获得20
23秒前
LaTeXer应助科研通管家采纳,获得50
23秒前
Singularity应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
赵兴才关注了科研通微信公众号
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011