Photocatalytic self-Fenton degradation of ciprofloxacin over S-scheme CuFe2O4/ZnIn2S4 heterojunction: Mechanism insight, degradation pathways and DFT calculations

降级(电信) 机制(生物学) 光催化 异质结 材料科学 化学工程 化学 环境化学 催化作用 光电子学 物理 电子工程 工程类 生物化学 量子力学
作者
Dongdong Liu,Lipeng Jiang,Dengqian Chen,Zhengkai Hao,Bowen Deng,Yunyun Sun,Xin Liu,Boyin Jia,Limei Chen,Huitao Liu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:482: 149165-149165 被引量:37
标识
DOI:10.1016/j.cej.2024.149165
摘要

The photo-Fenton process is a promising technology for wastewater purification, but the extra addition of H2O2 and the limited conversion of Fe2+/Fe3+ greatly hinder its practical application. In this study, we presented S-scheme CuFe2O4/ZnIn2S4 heterojunction photocatalytic self-Fenton system for the degradation of ciprofloxacin (CIP). The formation of an internal electric field in CuFe2O4/ZnIn2S4 heterojunction facilitated the transport and separation of photogenerated carriers, exhibiting high visible light absorption ability and photocatalytic activity. The CuFe2O4/ZnIn2S4 photocatalytic system exhibited the surprisingly high H2O2 selectivity (96.8 %) and H2O2 yield (2545.4 µmol·g−1) through the 2e−-ORR process. DFT calculations found that the O2 molecules were adsorbed on Cu atom of CuFe2O4/ZnIn2S4 in a “Yeager-type” configuration, which facilitated the formation of a key intermediate (*OOH) for the conversion O2 into H2O2. The 25 mg·L−1 of CIP could be completely degraded within 60 min in CuFe2O4/ZnIn2S4 photocatalytic system, while this system also had good cyclic stability and practicality. The photogenerated electrons that accumulated on conduction band of CuFe2O4 facilitated the reduction of Fe3+ and Cu2+ to Fe2+ and Cu+, accompanying by the generation of OH, 1O2 and O2−, while the photogenerated holes that accumulated on the valence band of ZnIn2S4 could directly degrade pollutants. Finally, the vulnerable atomic sites of CIP were successfully predicted by Fukui function, while the CIP degradation pathway and toxicity analysis of degradation products were further clarified. This study provided a new design route for constructing photocatalytic self-Fenton system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
努力努力再努力CMY完成签到,获得积分10
1秒前
我来也完成签到 ,获得积分10
1秒前
大个应助炙心采纳,获得10
3秒前
xichang发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
食分子发布了新的文献求助10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
于骁完成签到,获得积分10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得30
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
wkjfh应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
爆米花应助hh采纳,获得10
7秒前
打打应助爱听歌土豆采纳,获得10
7秒前
打打应助阿帆采纳,获得10
8秒前
LY_Qin应助花花采纳,获得10
8秒前
9秒前
yhx完成签到,获得积分10
9秒前
情怀应助upward采纳,获得10
10秒前
10秒前
liu发布了新的文献求助10
10秒前
delect完成签到,获得积分10
10秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427