Synergistically achieving high strength and impact toughness in Ti–6Al–4V-0.5Mo-0.5Zr alloy pipe with bimodal microstructure

微观结构 合金 材料科学 冶金 韧性 钛合金
作者
Shuxian Peng,Yikui Liu,Mingzhu Fu,Yuanlong Liang,Kai Zhang,Chun Feng,Weizhong Feng,Pinghui Zhang,Huiqun Liu
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:895: 146217-146217 被引量:2
标识
DOI:10.1016/j.msea.2024.146217
摘要

To achieve high strength and high impact toughness, three kinds of bimodal microstructure of Ti–6Al–4V-0.5Mo-0.5Zr alloy pipe were tailored through solution treatment at the α+β phase region (860 °C, 890 °C, and 920 °C) and followed by aging at 500 °C. The bimodal microstructure consists of the primary α (αp) and β-transformed domain (βt), in which the secondary α phase (αs) precipitated in the β matrix, with different volume fraction. With the increase in solution temperature, the grain size of αp remained unchanged while the volume fraction decreased. At the same time, the volume fraction of βt and the width of αs phase increased. Furthermore, the content of low-angle grain boundaries inside the αp phase decreased. Subsequent aging resulted in finer precipitation of αs within the βt domain. Solution treatment at 890 °C and ageing at 500 °C (denoted as the STA890 sample) achieved an excellent combination of yield strength 903 MPa, tensile strength 1023 MPa, elongation 12.9%, and impact energy 31 J. With the increase of αs width, the strength of the alloy decreased, and the ductility increased slightly. Higher impact energy originated from {10 1‾ 2} tension twins activated in the STA890 sample during the impact loading process, αp and βt underwent severe bending and plastic deformation. The present study provides a feasible industrial heat treatment strategy for improving impact energy with high strength of the α+β titanium alloy pipe used for oil drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就瞅你发布了新的文献求助10
1秒前
orixero应助uilyang采纳,获得30
1秒前
xidongdong关注了科研通微信公众号
1秒前
kang完成签到,获得积分10
1秒前
李健应助毛子涵采纳,获得10
1秒前
天天快乐应助笑点低的不采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
yian007完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
JasonSun完成签到,获得积分10
6秒前
6秒前
SciGPT应助缓慢易云采纳,获得10
7秒前
xuxu发布了新的文献求助20
7秒前
7秒前
7秒前
侯美琪完成签到 ,获得积分10
7秒前
8秒前
8秒前
苹果发布了新的文献求助10
8秒前
12334发布了新的文献求助10
8秒前
ww发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
大个应助渊_采纳,获得10
9秒前
9秒前
RockRedfoo完成签到 ,获得积分10
9秒前
scvsdz发布了新的文献求助10
10秒前
10秒前
Scidog完成签到,获得积分0
10秒前
谨言完成签到 ,获得积分10
11秒前
飘逸鸵鸟发布了新的文献求助10
11秒前
mobo完成签到,获得积分10
12秒前
减肥为窈窕完成签到,获得积分10
12秒前
烩面大师发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582