AMFGP: An active learning reliability analysis method based on multi-fidelity Gaussian process surrogate model

替代模型 可靠性(半导体) 忠诚 高斯过程 计算机科学 过程(计算) 可靠性工程 高斯分布 克里金 机器学习 人工智能 工程类 物理 程序设计语言 量子力学 电信 功率(物理)
作者
Ning Lu,Yan‐Feng Li,Jinhua Mi,Hong‐Zhong Huang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:: 110020-110020 被引量:3
标识
DOI:10.1016/j.ress.2024.110020
摘要

Multi-fidelity modeling is widely available in theoretical research and engineering practice. Although high-fidelity models often necessitate substantial computational resources, they yield more accurate and reliable results. Low-fidelity models are less computationally demanding, while their results may be inaccurate or unreliable. For the reliability analysis based on complex limit state functions, a method based on active learning multi-fidelity Gaussian process model, called AMFGP, is proposed by combining surrogate model with adaptive strategy, ensuring a balance between prediction accuracy and computational cost in terms of both surrogate modeling and active learning: A dependent Gaussian process surrogate model using complete statistical characteristics is developed under the multi-fidelity framework, and the surrogate performances of different single-fidelity and multi-fidelity models with different learning functions are investigated; based on the proposed model, an adaptive strategy considering the dependence between predictions, the model correlation, and the sample density is designed, and the adaptive performance of different learning functions in different models is explored. The proposed method is validated for effectiveness and adaptability in three mathematical examples with different dimensions and demonstrated for efficiency and practicality in an engineering application to aero engine gear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大男完成签到,获得积分10
刚刚
刚刚
1秒前
FF完成签到 ,获得积分10
1秒前
123完成签到,获得积分10
4秒前
xiangwei发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
严明发布了新的文献求助10
7秒前
9秒前
浮游应助自然冥茗采纳,获得10
9秒前
花粉过敏发布了新的文献求助10
10秒前
脑洞疼应助犹豫晓啸采纳,获得10
11秒前
善学以致用应助张艺凡采纳,获得30
13秒前
一碗晚月完成签到,获得积分10
14秒前
y大哥略略略完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
英俊的铭应助y大哥略略略采纳,获得10
17秒前
17秒前
orixero应助minute采纳,获得10
17秒前
大力的宝川完成签到 ,获得积分10
17秒前
18秒前
18秒前
大道无痕发布了新的文献求助10
20秒前
科研通AI6应助程雯慧采纳,获得10
20秒前
20秒前
tian发布了新的文献求助10
22秒前
犹豫晓啸发布了新的文献求助10
22秒前
思源应助科研安徒生采纳,获得10
22秒前
鹤轩发布了新的文献求助10
23秒前
24秒前
24秒前
英姑应助清秀的踏歌采纳,获得10
26秒前
26秒前
shen发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325