AMFGP: An active learning reliability analysis method based on multi-fidelity Gaussian process surrogate model

替代模型 可靠性(半导体) 忠诚 高斯过程 计算机科学 过程(计算) 可靠性工程 高斯分布 克里金 机器学习 人工智能 工程类 物理 程序设计语言 电信 功率(物理) 量子力学
作者
Ning Lu,Yan‐Feng Li,Jinhua Mi,Hong‐Zhong Huang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:: 110020-110020 被引量:3
标识
DOI:10.1016/j.ress.2024.110020
摘要

Multi-fidelity modeling is widely available in theoretical research and engineering practice. Although high-fidelity models often necessitate substantial computational resources, they yield more accurate and reliable results. Low-fidelity models are less computationally demanding, while their results may be inaccurate or unreliable. For the reliability analysis based on complex limit state functions, a method based on active learning multi-fidelity Gaussian process model, called AMFGP, is proposed by combining surrogate model with adaptive strategy, ensuring a balance between prediction accuracy and computational cost in terms of both surrogate modeling and active learning: A dependent Gaussian process surrogate model using complete statistical characteristics is developed under the multi-fidelity framework, and the surrogate performances of different single-fidelity and multi-fidelity models with different learning functions are investigated; based on the proposed model, an adaptive strategy considering the dependence between predictions, the model correlation, and the sample density is designed, and the adaptive performance of different learning functions in different models is explored. The proposed method is validated for effectiveness and adaptability in three mathematical examples with different dimensions and demonstrated for efficiency and practicality in an engineering application to aero engine gear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Colin完成签到,获得积分10
刚刚
6666666666完成签到 ,获得积分10
刚刚
2秒前
汪少侠完成签到,获得积分10
3秒前
3秒前
4秒前
我是老大应助祖冰绿采纳,获得10
4秒前
此晴可待发布了新的文献求助10
4秒前
852应助EED采纳,获得10
4秒前
5秒前
5秒前
吃人陈完成签到,获得积分10
6秒前
6秒前
Arctic发布了新的文献求助10
6秒前
7秒前
7秒前
ccc发布了新的文献求助10
7秒前
黎明发布了新的文献求助10
7秒前
张海缘发布了新的文献求助10
8秒前
凌千颂关注了科研通微信公众号
9秒前
科研通AI2S应助阿钰采纳,获得10
9秒前
9秒前
北川完成签到,获得积分10
10秒前
风中的一德完成签到,获得积分10
10秒前
雅丽完成签到,获得积分10
11秒前
Deny发布了新的文献求助10
11秒前
12秒前
橘猫完成签到 ,获得积分10
12秒前
vinecho完成签到,获得积分20
12秒前
12秒前
刘雪松完成签到,获得积分10
13秒前
大白发布了新的文献求助10
13秒前
搞怪半烟完成签到 ,获得积分10
13秒前
清雨潇璇完成签到,获得积分10
13秒前
boshi完成签到,获得积分10
13秒前
小熙完成签到 ,获得积分10
14秒前
14秒前
车厘子完成签到,获得积分20
14秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650