AMFGP: An active learning reliability analysis method based on multi-fidelity Gaussian process surrogate model

替代模型 可靠性(半导体) 忠诚 高斯过程 计算机科学 过程(计算) 可靠性工程 高斯分布 克里金 机器学习 人工智能 工程类 物理 程序设计语言 电信 功率(物理) 量子力学
作者
Ning Lu,Yan‐Feng Li,Jinhua Mi,Hong‐Zhong Huang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:: 110020-110020 被引量:3
标识
DOI:10.1016/j.ress.2024.110020
摘要

Multi-fidelity modeling is widely available in theoretical research and engineering practice. Although high-fidelity models often necessitate substantial computational resources, they yield more accurate and reliable results. Low-fidelity models are less computationally demanding, while their results may be inaccurate or unreliable. For the reliability analysis based on complex limit state functions, a method based on active learning multi-fidelity Gaussian process model, called AMFGP, is proposed by combining surrogate model with adaptive strategy, ensuring a balance between prediction accuracy and computational cost in terms of both surrogate modeling and active learning: A dependent Gaussian process surrogate model using complete statistical characteristics is developed under the multi-fidelity framework, and the surrogate performances of different single-fidelity and multi-fidelity models with different learning functions are investigated; based on the proposed model, an adaptive strategy considering the dependence between predictions, the model correlation, and the sample density is designed, and the adaptive performance of different learning functions in different models is explored. The proposed method is validated for effectiveness and adaptability in three mathematical examples with different dimensions and demonstrated for efficiency and practicality in an engineering application to aero engine gear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑波涛完成签到,获得积分10
1秒前
Wd发布了新的文献求助10
2秒前
鹿芩应助赫如冰采纳,获得10
3秒前
研友_VZG7GZ应助YanDongXu采纳,获得10
3秒前
4秒前
4秒前
4秒前
美吧发布了新的文献求助10
5秒前
FashionBoy应助陈法国采纳,获得10
5秒前
syjssxwz完成签到,获得积分10
7秒前
7秒前
7秒前
PSC完成签到,获得积分10
7秒前
周晴完成签到 ,获得积分10
7秒前
8秒前
光亮芷完成签到,获得积分20
8秒前
8秒前
xxxx完成签到,获得积分20
9秒前
10秒前
11秒前
美吧完成签到,获得积分20
12秒前
xxxx发布了新的文献求助30
13秒前
suolong完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
天天快乐应助乐观的安梦采纳,获得10
15秒前
16秒前
YUNJIE发布了新的文献求助10
18秒前
18秒前
简单的冬灵完成签到,获得积分20
19秒前
SPU的小追随完成签到,获得积分10
19秒前
DrW发布了新的文献求助10
19秒前
小鱼儿完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
隐形曼青应助捕风的栗子采纳,获得10
22秒前
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076389
求助须知:如何正确求助?哪些是违规求助? 2729242
关于积分的说明 7508108
捐赠科研通 2377477
什么是DOI,文献DOI怎么找? 1260632
科研通“疑难数据库(出版商)”最低求助积分说明 611101
版权声明 597194