Data Augmentation for Human Activity Recognition With Generative Adversarial Networks

计算机科学 合成数据 原始数据 人工智能 生成语法 动态时间归整 过程(计算) 机器学习 生成对抗网络 对抗制 数据挖掘 模式识别(心理学) 深度学习 操作系统 程序设计语言
作者
Marcos Lupión,Federico Cruciani,Ian Cleland,Chris Nugent,Pilar M. Ortigosa
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2350-2361 被引量:2
标识
DOI:10.1109/jbhi.2024.3364910
摘要

Currently, Human Activity Recognition (HAR) applications need a large volume of data to be able to generalize to new users and environments.However, the availability of labeled data is usually limited and the process of recording new data is costly and time-consuming.Synthetically increasing datasets using Generative Adversarial Networks (GANs) has been proposed, outperforming cropping, time-warping, and jittering techniques on raw signals.Incorporating GAN-generated synthetic data into datasets has been demonstrated to improve the accuracy of trained models.Regardless, currently, there is no optimal GAN architecture to generate accelerometry signals, neither a proper evaluation methodology to assess signal quality or accuracy using synthetic data.This work is the first to propose conditional Wasserstein Generative Adversarial Networks (cWGANs) to generate synthetic HAR accelerometry signals.Furthermore, we calculate quality metrics from the literature and study the impact of synthetic data on a large HAR dataset involving 395 users.Results show that i) cWGAN outperforms original Conditional Generative Adversarial Networks (cGANs), being 1D convolutional layers appropriate for generating accelerometry signals, ii) the performance improvement incorporating synthetic data is more significant as the dataset size is smaller, and iii) the quantity of synthetic data required is inversely proportional to the quantity of real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲸落发布了新的文献求助10
刚刚
wangye发布了新的文献求助10
1秒前
李爱国应助南梦娇采纳,获得10
1秒前
1秒前
1秒前
lulu发布了新的文献求助10
2秒前
来了完成签到,获得积分10
2秒前
救我发布了新的文献求助10
3秒前
3秒前
开心妙之完成签到,获得积分20
3秒前
小二郎应助cora采纳,获得10
3秒前
桥豆麻袋发布了新的文献求助50
3秒前
3秒前
强壮的美女完成签到,获得积分10
3秒前
3秒前
领导范儿应助橘涂采纳,获得10
4秒前
静静静发布了新的文献求助10
4秒前
5秒前
5秒前
佐哥完成签到,获得积分10
5秒前
11111完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
霉头脑完成签到 ,获得积分10
6秒前
科研通AI6应助张默言采纳,获得10
6秒前
赘婿应助蓝书签采纳,获得30
7秒前
yx阿聪发布了新的文献求助10
8秒前
开心妙之发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
梁蓉完成签到,获得积分20
9秒前
Zidawhy发布了新的文献求助10
9秒前
9秒前
魔幻凡梦完成签到,获得积分10
9秒前
钦cc完成签到,获得积分10
9秒前
千里江山一只蝇完成签到,获得积分10
10秒前
10秒前
Nnn完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343