亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data Augmentation for Human Activity Recognition With Generative Adversarial Networks

计算机科学 合成数据 原始数据 人工智能 生成语法 动态时间归整 过程(计算) 机器学习 生成对抗网络 对抗制 数据挖掘 模式识别(心理学) 深度学习 操作系统 程序设计语言
作者
Marcos Lupión,Federico Cruciani,Ian Cleland,Chris Nugent,Pilar M. Ortigosa
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2350-2361 被引量:2
标识
DOI:10.1109/jbhi.2024.3364910
摘要

Currently, Human Activity Recognition (HAR) applications need a large volume of data to be able to generalize to new users and environments.However, the availability of labeled data is usually limited and the process of recording new data is costly and time-consuming.Synthetically increasing datasets using Generative Adversarial Networks (GANs) has been proposed, outperforming cropping, time-warping, and jittering techniques on raw signals.Incorporating GAN-generated synthetic data into datasets has been demonstrated to improve the accuracy of trained models.Regardless, currently, there is no optimal GAN architecture to generate accelerometry signals, neither a proper evaluation methodology to assess signal quality or accuracy using synthetic data.This work is the first to propose conditional Wasserstein Generative Adversarial Networks (cWGANs) to generate synthetic HAR accelerometry signals.Furthermore, we calculate quality metrics from the literature and study the impact of synthetic data on a large HAR dataset involving 395 users.Results show that i) cWGAN outperforms original Conditional Generative Adversarial Networks (cGANs), being 1D convolutional layers appropriate for generating accelerometry signals, ii) the performance improvement incorporating synthetic data is more significant as the dataset size is smaller, and iii) the quantity of synthetic data required is inversely proportional to the quantity of real data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑞雪完成签到,获得积分10
4秒前
6秒前
19秒前
28秒前
31秒前
Cmqq发布了新的文献求助10
32秒前
充电宝应助zhouxunnjau采纳,获得10
34秒前
果果发布了新的文献求助10
38秒前
所所应助Cmqq采纳,获得10
41秒前
小马甲应助吱吱草莓派采纳,获得10
47秒前
欣喜秋天完成签到,获得积分20
48秒前
领导范儿应助吱吱草莓派采纳,获得10
58秒前
1分钟前
大牛牛完成签到,获得积分10
1分钟前
过眼云烟完成签到,获得积分10
1分钟前
求学发布了新的文献求助10
1分钟前
1分钟前
clickable发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
佳佳发布了新的文献求助10
1分钟前
果果完成签到,获得积分20
1分钟前
共享精神应助孔踏歌采纳,获得10
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
吃瓜群众完成签到,获得积分10
1分钟前
zhouxunnjau发布了新的文献求助10
1分钟前
小江发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
完美世界应助小江采纳,获得10
2分钟前
求学完成签到,获得积分10
2分钟前
在水一方应助求学采纳,获得10
2分钟前
loser完成签到 ,获得积分10
2分钟前
大模型应助Cmqq采纳,获得10
2分钟前
清浅完成签到 ,获得积分10
2分钟前
zeice完成签到 ,获得积分10
2分钟前
阔达白凡完成签到,获得积分10
2分钟前
2分钟前
美丽的冰枫完成签到,获得积分10
2分钟前
佳佳完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904