亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data Augmentation for Human Activity Recognition With Generative Adversarial Networks

计算机科学 合成数据 原始数据 人工智能 生成语法 动态时间归整 过程(计算) 机器学习 生成对抗网络 对抗制 数据挖掘 模式识别(心理学) 深度学习 操作系统 程序设计语言
作者
Marcos Lupión,Federico Cruciani,Ian Cleland,Chris Nugent,Pilar M. Ortigosa
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2350-2361 被引量:2
标识
DOI:10.1109/jbhi.2024.3364910
摘要

Currently, Human Activity Recognition (HAR) applications need a large volume of data to be able to generalize to new users and environments.However, the availability of labeled data is usually limited and the process of recording new data is costly and time-consuming.Synthetically increasing datasets using Generative Adversarial Networks (GANs) has been proposed, outperforming cropping, time-warping, and jittering techniques on raw signals.Incorporating GAN-generated synthetic data into datasets has been demonstrated to improve the accuracy of trained models.Regardless, currently, there is no optimal GAN architecture to generate accelerometry signals, neither a proper evaluation methodology to assess signal quality or accuracy using synthetic data.This work is the first to propose conditional Wasserstein Generative Adversarial Networks (cWGANs) to generate synthetic HAR accelerometry signals.Furthermore, we calculate quality metrics from the literature and study the impact of synthetic data on a large HAR dataset involving 395 users.Results show that i) cWGAN outperforms original Conditional Generative Adversarial Networks (cGANs), being 1D convolutional layers appropriate for generating accelerometry signals, ii) the performance improvement incorporating synthetic data is more significant as the dataset size is smaller, and iii) the quantity of synthetic data required is inversely proportional to the quantity of real data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助niko采纳,获得10
5秒前
pluto应助niko采纳,获得10
5秒前
王誓言应助niko采纳,获得10
5秒前
Zx_1993应助niko采纳,获得10
5秒前
科研通AI2S应助niko采纳,获得10
5秒前
小蘑菇应助niko采纳,获得10
6秒前
zmj应助niko采纳,获得10
6秒前
zmj应助niko采纳,获得10
6秒前
BPATIENT应助niko采纳,获得10
6秒前
BPATIENT应助niko采纳,获得10
6秒前
BPATIENT应助niko采纳,获得10
11秒前
科研通AI2S应助niko采纳,获得10
11秒前
英姑应助niko采纳,获得10
11秒前
英俊的铭应助niko采纳,获得10
11秒前
嘴角微微仰起笑应助niko采纳,获得10
11秒前
pluto应助niko采纳,获得10
11秒前
隐形曼青应助niko采纳,获得10
11秒前
pluto应助niko采纳,获得10
11秒前
无花果应助niko采纳,获得10
11秒前
BPATIENT应助niko采纳,获得10
11秒前
梅天豪应助直率的雪巧采纳,获得10
14秒前
BPATIENT应助niko采纳,获得10
16秒前
Akim应助niko采纳,获得10
16秒前
我是老大应助niko采纳,获得10
16秒前
领导范儿应助niko采纳,获得10
16秒前
JamesPei应助niko采纳,获得10
16秒前
田様应助niko采纳,获得10
16秒前
CodeCraft应助niko采纳,获得10
17秒前
英俊的铭应助niko采纳,获得10
17秒前
CipherSage应助niko采纳,获得10
17秒前
酷波er应助niko采纳,获得10
17秒前
大模型应助niko采纳,获得10
22秒前
Orange应助niko采纳,获得10
22秒前
桐桐应助niko采纳,获得10
22秒前
烟花应助niko采纳,获得10
22秒前
SciGPT应助niko采纳,获得10
22秒前
上官若男应助niko采纳,获得10
22秒前
李健的粉丝团团长应助niko采纳,获得10
22秒前
万能图书馆应助niko采纳,获得10
22秒前
桐桐应助niko采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450962