Data Augmentation for Human Activity Recognition With Generative Adversarial Networks

计算机科学 合成数据 原始数据 人工智能 生成语法 动态时间归整 过程(计算) 机器学习 生成对抗网络 对抗制 数据挖掘 模式识别(心理学) 深度学习 操作系统 程序设计语言
作者
Marcos Lupión,Federico Cruciani,Ian Cleland,Chris Nugent,Pilar M. Ortigosa
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2350-2361 被引量:2
标识
DOI:10.1109/jbhi.2024.3364910
摘要

Currently, Human Activity Recognition (HAR) applications need a large volume of data to be able to generalize to new users and environments.However, the availability of labeled data is usually limited and the process of recording new data is costly and time-consuming.Synthetically increasing datasets using Generative Adversarial Networks (GANs) has been proposed, outperforming cropping, time-warping, and jittering techniques on raw signals.Incorporating GAN-generated synthetic data into datasets has been demonstrated to improve the accuracy of trained models.Regardless, currently, there is no optimal GAN architecture to generate accelerometry signals, neither a proper evaluation methodology to assess signal quality or accuracy using synthetic data.This work is the first to propose conditional Wasserstein Generative Adversarial Networks (cWGANs) to generate synthetic HAR accelerometry signals.Furthermore, we calculate quality metrics from the literature and study the impact of synthetic data on a large HAR dataset involving 395 users.Results show that i) cWGAN outperforms original Conditional Generative Adversarial Networks (cGANs), being 1D convolutional layers appropriate for generating accelerometry signals, ii) the performance improvement incorporating synthetic data is more significant as the dataset size is smaller, and iii) the quantity of synthetic data required is inversely proportional to the quantity of real data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunshine应助快乐的凡之采纳,获得50
1秒前
英俊的铭应助lalala采纳,获得10
1秒前
朴实的母鸡完成签到,获得积分10
2秒前
段翠完成签到,获得积分10
3秒前
4秒前
慕青应助wwwddk采纳,获得10
4秒前
于锦程发布了新的文献求助20
5秒前
超级无心完成签到,获得积分10
5秒前
6秒前
635913047完成签到,获得积分10
6秒前
bkagyin应助smin采纳,获得10
7秒前
靴子发布了新的文献求助10
8秒前
积极的猎豹完成签到,获得积分10
10秒前
10秒前
12秒前
只争朝夕应助微笑大螃蟹采纳,获得10
12秒前
科研小能手完成签到,获得积分10
13秒前
14秒前
16秒前
lalala发布了新的文献求助10
16秒前
靴子完成签到,获得积分20
16秒前
刘慧发布了新的文献求助10
16秒前
寻道图强举报老阎求助涉嫌违规
19秒前
JJy发布了新的文献求助10
20秒前
20秒前
haha完成签到 ,获得积分10
22秒前
吃人不眨眼应助liliy采纳,获得20
23秒前
筱x完成签到,获得积分10
24秒前
慕青应助河马采纳,获得10
25秒前
英姑应助于锦程采纳,获得10
25秒前
26秒前
27秒前
27秒前
28秒前
30秒前
31秒前
小飞飞发布了新的文献求助10
31秒前
Schmidt完成签到 ,获得积分10
31秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557364
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668208
捐赠科研通 4583880
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459413