Virasoro代数
简单(哲学)
张量积
简单模块
顶点(图论)
数学
纯数学
顶点算子代数
代数数
Verma模
域代数上的
李代数
当前代数
代数表示
离散数学
细胞代数
数学分析
乔丹代数
图形
哲学
认识论
作者
Haijun Tan,Yu-Feng Yao,Kaiming Zhao
出处
期刊:Proceedings
[Cambridge University Press]
日期:2024-01-17
卷期号:: 1-45
被引量:1
摘要
In this paper, we classify simple smooth modules over the mirror Heisenberg–Virasoro algebra ${\mathfrak {D}}$ , and simple smooth modules over the twisted Heisenberg–Virasoro algebra $\bar {\mathfrak {D}}$ with non-zero level. To this end we generalize Sugawara operators to smooth modules over the Heisenberg algebra, and develop new techniques. As applications, we characterize simple Whittaker modules and simple highest weight modules over ${\mathfrak {D}}$ . A vertex-algebraic interpretation of our result is the classification of simple weak twisted and untwisted modules over the Heisenberg–Virasoro vertex algebras. We also present a few examples of simple smooth ${\mathfrak {D}}$ -modules and $\bar {\mathfrak {D}}$ -modules induced from simple modules over finite dimensional solvable Lie algebras, that are not tensor product modules of Virasoro modules and Heisenberg modules. This is very different from the case of simple highest weight modules over $\mathfrak {D}$ and $\bar {\mathfrak {D}}$ which are always tensor products of simple Virasoro modules and simple Heisenberg modules.
科研通智能强力驱动
Strongly Powered by AbleSci AI