过电位
制氢
电解
镍
材料科学
析氧
分解水
氢
无机化学
尿素
催化作用
化学工程
电化学
化学
电极
物理化学
电解质
冶金
有机化学
工程类
光催化
作者
Peng Guo,Shoufu Cao,Wenjing Huang,Xiaoqing Lü,Weizhe Chen,Youzi Zhang,Yijin Wang,Xu Xin,Ruiqing Zou,Sibi Liu,Xuanhua Li
标识
DOI:10.1002/adma.202311766
摘要
Abstract Water electrolysis is an environmentally‐friendly strategy for hydrogen production but suffers from significant energy consumption. Substituting urea oxidation reaction (UOR) with lower theoretical voltage for water oxidation reaction adopting nickel‐based electrocatalysts engenders reduced energy consumption for hydrogen production. The main obstacle remains strong interaction between accumulated Ni 3+ and *COO in the conventional Ni 3+ ‐catalyzing pathway. Herein, a novel Ni 3+ /Ni 2+ mediated pathway for UOR via constructing a heterojunction of nickel metaphosphate and nickel telluride (Ni 2 P 4 O 12 /NiTe), which efficiently lowers the energy barrier of UOR and avoids the accumulation of Ni 3+ and excessive adsorption of *COO on the electrocatalysts, is developed. As a result, Ni 2 P 4 O 12 /NiTe demonstrates an exceptionally low potential of 1.313 V to achieve a current density of 10 mA cm −2 toward efficient urea oxidation reaction while simultaneously showcases an overpotential of merely 24 mV at 10 mA cm −2 for hydrogen evolution reaction. Constructing urea electrolysis electrolyzer using Ni 2 P 4 O 12 /NiTe at both sides attains 100 mA cm −2 at a low cell voltage of 1.475 V along with excellent stability over 500 h accompanied with nearly 100% Faradic efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI