Characteristics of Resting-State Electroencephalogram Network in α-Band of Table Tennis Athletes

运动员 静息状态功能磁共振成像 脑功能偏侧化 脑电图 心理学 认知 表(数据库) 物理医学与康复 物理疗法 计算机科学 神经科学 医学 数据挖掘
作者
Jilong Shi,Fatima A. Nasrallah,Xuechen Mao,Qin Huang,Jun Pan,An-Min Li
出处
期刊:Brain Sciences [MDPI AG]
卷期号:14 (3): 222-222 被引量:1
标识
DOI:10.3390/brainsci14030222
摘要

Background: Table tennis athletes have been extensively studied for their cognitive processing advantages and brain plasticity. However, limited research has focused on the resting-state function of their brains. This study aims to investigate the network characteristics of the resting-state electroencephalogram in table tennis athletes and identify specific brain network biomarkers. Methods: A total of 48 healthy right-handed college students participated in this study, including 24 table tennis athletes and 24 controls with no exercise experience. Electroencephalogram data were collected using a 64-conductive active electrode system during eyes-closed resting conditions. The analysis involved examining the average power spectral density and constructing brain functional networks using the weighted phase-lag index. Network topological characteristics were then calculated. Results: The results revealed that table tennis athletes exhibited significantly higher average power spectral density in the α band compared to the control group. Moreover, athletes not only demonstrated stronger functional connections, but they also exhibited enhanced transmission efficiency in the brain network, particularly at the local level. Additionally, a lateralization effect was observed, with more potent interconnected hubs identified in the left hemisphere of the athletes’ brain. Conclusions: Our findings imply that the α band may be uniquely associated with table tennis athletes and their motor skills. The brain network characteristics of athletes during the resting state are worth further attention to gain a better understanding of adaptability of and changes in their brains during training and competition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范月月完成签到 ,获得积分10
刚刚
默默的皮牙子应助Rrr采纳,获得10
刚刚
默默的皮牙子应助Rrr采纳,获得10
刚刚
机智苗完成签到,获得积分10
刚刚
1秒前
小油条完成签到,获得积分10
2秒前
马保国123发布了新的文献求助10
2秒前
wanci应助晨曦采纳,获得10
2秒前
潇洒的翠丝完成签到,获得积分20
2秒前
Frank完成签到,获得积分10
2秒前
子车代芙完成签到,获得积分10
2秒前
陌路发布了新的文献求助10
3秒前
猪猪hero发布了新的文献求助10
4秒前
灵巧荆发布了新的文献求助10
4秒前
无私映秋发布了新的文献求助10
4秒前
思源应助zhui采纳,获得10
4秒前
小黄应助清欢采纳,获得10
4秒前
蕾子完成签到,获得积分20
4秒前
敬老院N号应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
喜悦中道应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
健壮惋清完成签到 ,获得积分10
6秒前
桐桐应助佳佳采纳,获得10
6秒前
科研通AI5应助润润轩轩采纳,获得10
6秒前
6秒前
Orange应助w.h采纳,获得10
7秒前
稳重的安萱完成签到,获得积分10
7秒前
8秒前
Owen应助马静雨采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794