Maintaining the homeostasis of the placental vasculature is of paramount importance for ensuring normal fetal growth and development. Any disruption in this balance can lead to perinatal morbidity. Several studies have uncovered an association between high levels of oxidized cholesterol (oxysterols), and complications during pregnancy, including gestational diabetes mellitus (GDM) and preeclampsia (PE). These complications often coincide with disturbances in placental vascular function. Here, we investigate the role of two oxysterols (7-ketocholesterol, 7β-hydroxycholesterol) in (dys)function of primary fetoplacental endothelial cells (fpEC). Our findings reveal that oxysterols exert a disruptive influence on fpEC function by elevating the production of reactive oxygen species (ROS) and interfering with mitochondrial transmembrane potential, leading to its depolarization. Moreover, oxysterol-treated fpEC exhibited alterations in intracellular calcium (Ca