Novel Robust Automatic Brain-Tumor Detection and Segmentation Using Magnetic Resonance Imaging

轮廓 磁共振成像 脑瘤 分割 模式识别(心理学) 深度学习 图像分割 活动轮廓模型 光学(聚焦) 计算机科学 人工智能 计算机视觉 物理 医学 放射科 计算机图形学(图像) 病理 光学
作者
Mingyang Xu,Limei Guo,Hsiao‐Chun Wu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 10957-10964 被引量:4
标识
DOI:10.1109/jsen.2024.3367123
摘要

Computer-aided automatic brain-tumor detection has been a very important biomedical engineering research problem for years. As the sizes and shapes of tumors vary dramatically from a subject to another, how to build a robust automatic brain-tumor detector is still quite challenging nowadays. There exist many signal processing approaches for automatic brain-tumor detection. In this work, we focus on the approach based on active contour models for magnetic resonance imaging (MRI) as it not only can detect the existence of one or more tumors but also can measure the size(s), delineate the shape(s), and find the location(s) at the same time. On the other hand, the aforementioned purpose cannot be achieved by a single deep-learning model easily. It would be quite difficult for the existing deep-learning-based methods to select the appropriate region(s) of interest so as to extract reliable features for brain-tumor detection since tumors of various sizes and shapes could be present in an MRI image. Here, we propose a novel brain-tumor detection and segmentation scheme using active contouring in tandem with texture-based decision metric for MRI images. In our proposed new scheme, the active contouring mechanism is first employed to automatically find one or more suspected regions (image segments). Then, these suspected image segments are further evaluated using our proposed new texture-based decision-making criterion to determine whether any of them actually involves a true tumor. We also test the effectiveness of our proposed new scheme using the well-known Brain-Tumor MRI dataset and the area-under-curve (AUC) and the average correct segmentation area ratio resulting from our new method are 0.9244 and 0.8019, respectively, which is much better than the existing deep-learning and active-contour based brain-tumor detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小酒窝周周完成签到 ,获得积分10
1秒前
2秒前
3秒前
超帅鸣凤发布了新的文献求助10
3秒前
3秒前
yu发布了新的文献求助10
3秒前
星球日记发布了新的文献求助10
4秒前
多多完成签到,获得积分10
4秒前
姜问柳完成签到,获得积分10
4秒前
MADKAI发布了新的文献求助10
4秒前
zzw完成签到,获得积分10
5秒前
顺利绿真发布了新的文献求助10
5秒前
5秒前
5秒前
hans2400应助羞涩的虔采纳,获得10
5秒前
废柴发布了新的文献求助10
5秒前
沐渔完成签到,获得积分10
7秒前
中国农业科学院任宏伟完成签到,获得积分10
8秒前
kinger发布了新的文献求助10
8秒前
8秒前
SIiveryyyy完成签到,获得积分10
8秒前
YQF发布了新的文献求助10
8秒前
超帅鸣凤完成签到,获得积分10
8秒前
9秒前
JamesPei应助WDD采纳,获得10
9秒前
SciGPT应助可靠寒松采纳,获得10
9秒前
9秒前
9秒前
QXH完成签到,获得积分10
9秒前
MADKAI发布了新的文献求助10
10秒前
djsj发布了新的文献求助30
10秒前
cc完成签到,获得积分20
10秒前
10秒前
ljl86400完成签到,获得积分10
11秒前
完美世界应助风中刺猬采纳,获得10
11秒前
乐乐应助和谐一一采纳,获得10
11秒前
杰杰发布了新的文献求助10
12秒前
黄洁滢发布了新的文献求助10
12秒前
干净语梦发布了新的文献求助10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488284
求助须知:如何正确求助?哪些是违规求助? 3076029
关于积分的说明 9143413
捐赠科研通 2768356
什么是DOI,文献DOI怎么找? 1519139
邀请新用户注册赠送积分活动 703551
科研通“疑难数据库(出版商)”最低求助积分说明 701922