化学
锂(药物)
电解质
聚酯纤维
己二酸
电导率
电化学
化学工程
高分子化学
有机化学
纳米技术
电极
物理化学
医学
材料科学
工程类
内分泌学
作者
Xiaoxin Xie,Peng Zhang,Xihui Li,Zhaoxu Wang,Xuan Qin,Minhua Shao,Liqun Zhang,Weidong Zhou
摘要
Solid polymer electrolytes (SPEs) are one of the most practical candidates for solid-state batteries owing to their high flexibility and low production cost, but their application is limited by low Li+ conductivity and a narrow electrochemical window. To improve performance, it is necessary to reveal the structure–property relationship of SPEs. Here, 23 fluorinated linear polyesters were prepared by editing the coordination units, flexible linkage segments, and interface passivating groups. Besides the traditionally demonstrated coordinating capability and flexibility of polymer chains, the molecular asymmetry and resulting interchain aggregation are observed critical for Li+ conductivity. By tailoring the molecular asymmetry and coordination ability of polyesters, the Li+ conductivity can be raised by 10 times. Among these polyesters, solvent-free poly(pentanediol adipate) delivers the highest room-temperature Li+ conductivity of 0.59 × 10–4 S cm–1. The chelating coordination of oxalate and Li+ leads to an electron delocalization of alkoxy oxygen, enhancing the antioxidation capability of SPEs. To lower the cost, high-value LiTFSI in SPEs is recycled at 90%, and polyesters can be regenerated at 86%. This work elucidates the structure–property relationship of polyester-based SPEs, displays the design principles of SPEs, and provides a way for the development of sustainable solid-state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI