Cross-Aware Early Fusion With Stage-Divided Vision and Language Transformer Encoders for Referring Image Segmentation

计算机科学 编码器 人工智能 计算机视觉 分割 自然语言 图像分割 稳健性(进化) 模式识别(心理学) 自然语言处理 生物化学 化学 基因 操作系统
作者
Yubin Cho,Hyunwoo Yu,Suk‐Ju Kang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5823-5833 被引量:6
标识
DOI:10.1109/tmm.2023.3340062
摘要

Referring segmentation aims to segment a target object related to a natural language expression. Key challenges of this task are understanding the meaning of complex and ambiguous language expressions and determining the relevant regions in the image with multiple objects by referring to the expression. Recent models have focused on the early fusion with the language features at the intermediate stage of the vision encoder, but these approaches have a limitation that the language features cannot refer to the visual information. To address this issue, this paper proposes a novel architecture, Cross-aware early fusion with stage-divided Vision and Language Transformer encoders (CrossVLT), which allows both language and vision encoders to perform the early fusion for improving the ability of the cross-modal context modeling. Unlike previous methods, our method enables the vision and language features to refer to each other's information at each stage to mutually enhance the robustness of both encoders. Furthermore, unlike the conventional scheme that relies solely on the high-level features for the cross-modal alignment, we introduce a feature-based alignment scheme that enables the low-level to high-level features of the vision and language encoders to engage in the cross-modal alignment. By aligning the intermediate cross-modal features in all encoder stages, this scheme leads to effective cross-modal fusion. In this way, the proposed approach is simple but effective for referring image segmentation, and it outperforms the previous state-of-the-art methods on three public benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
foxdaopo完成签到,获得积分10
1秒前
tong完成签到,获得积分10
1秒前
脆皮小小酥完成签到 ,获得积分10
1秒前
光亮妙之完成签到,获得积分10
1秒前
2秒前
唐新惠完成签到 ,获得积分10
3秒前
3秒前
充电宝应助居遥采纳,获得10
3秒前
ZXY完成签到,获得积分10
4秒前
祖山药完成签到,获得积分10
4秒前
乐观的浩天完成签到,获得积分20
5秒前
5秒前
whs完成签到 ,获得积分10
5秒前
tong发布了新的文献求助10
5秒前
espt给espt的求助进行了留言
5秒前
wanci应助友好醉波采纳,获得10
6秒前
Weiyuan完成签到,获得积分10
7秒前
吱吱草莓派完成签到 ,获得积分10
7秒前
北楠发布了新的文献求助10
7秒前
8秒前
Doreen完成签到,获得积分10
8秒前
孔乙己完成签到,获得积分10
9秒前
9秒前
9秒前
Accept2024完成签到,获得积分10
9秒前
开朗雪糕完成签到,获得积分10
10秒前
小王的科研小助手完成签到 ,获得积分10
10秒前
10秒前
maxiaoyun完成签到,获得积分10
11秒前
11秒前
气味儿若完成签到,获得积分20
11秒前
12秒前
嘟嘟嘟嘟完成签到 ,获得积分10
13秒前
whale完成签到,获得积分10
13秒前
上官若男应助闪闪的初南采纳,获得10
13秒前
14秒前
气味儿若发布了新的文献求助10
14秒前
严惜完成签到,获得积分10
14秒前
北楠完成签到,获得积分10
15秒前
宋治完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294825
求助须知:如何正确求助?哪些是违规求助? 2930755
关于积分的说明 8447840
捐赠科研通 2603057
什么是DOI,文献DOI怎么找? 1420887
科研通“疑难数据库(出版商)”最低求助积分说明 660702
邀请新用户注册赠送积分活动 643531