A Systematic Literature Review of Genetic Algorithm-Based Approaches for Cloud Task Scheduling

计算机科学 云计算 工作流程 调度(生产过程) 分布式计算 元启发式 人工智能 数学优化 数据库 数学 操作系统
作者
Henning Titi Ciptaningtyas,Ary Mazharuddin Shiddiqi,Diana Purwitasari
标识
DOI:10.1109/icts58770.2023.10330885
摘要

Cloud computing offers a promising approach to efficiently distribute tasks and workflows among virtual resources. Optimal scheduling of these resources is crucial to maximize the efficiency of cloud environments. Various nature-inspired metaheuristic solutions have been suggested to tackle this challenge, focusing on Genetic Algorithm (GA)-based techniques. GA has the capability to effectively manage the intricate and ever-changing characteristics of cloud task scheduling, hence enhancing the allocation of resources in accordance with present requirements. In this study, we comprehensively analyze GA-based techniques for cloud task scheduling by performing a Systematic Literature Review (SLR). Our review involves selecting relevant studies from online electronic databases based on predefined research questions (RQs) and criteria. We narrowed the selection from 385 articles to a final set of 20 articles that provide valuable insights into our research inquiries and form the foundation of our analysis. We explore different aspects of the literature, such as its properties, benefits, drawbacks, datasets, simulation tools, performance evaluations, and function objectives. Based on this analysis, we propose a classification framework incorporating a modified and hybrid GA method for scheduling tasks and workflows. Furthermore, we outline future research directions in this field. The overall efficacy of GA-modified and GA-Hybrid algorithms is very commendable. However, it is crucial to consider the intricacy and the potential for being confined to local optima in order to get more optimal outcomes in task scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Ayuyu采纳,获得10
1秒前
1秒前
YJ888发布了新的文献求助10
2秒前
王紫青完成签到,获得积分10
2秒前
672发布了新的文献求助10
3秒前
Agq完成签到,获得积分10
4秒前
彭于晏应助学术菜鸡123采纳,获得30
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
yizhiGao应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
ding应助fei采纳,获得10
7秒前
落叶完成签到,获得积分10
8秒前
yydragen应助可爱无招采纳,获得50
9秒前
slx发布了新的文献求助10
10秒前
科研通AI2S应助机智的水风采纳,获得10
10秒前
叮当发布了新的文献求助10
10秒前
haha发布了新的文献求助50
12秒前
孙燕应助keyun采纳,获得10
13秒前
hjy完成签到 ,获得积分10
14秒前
CipherSage应助落叶采纳,获得10
17秒前
修辛发布了新的文献求助10
18秒前
19秒前
荣和完成签到,获得积分10
19秒前
19秒前
FashionBoy应助Lenacici采纳,获得10
20秒前
杜兰特发布了新的文献求助10
21秒前
搜集达人应助bx采纳,获得10
21秒前
21秒前
野性的冬日关注了科研通微信公众号
22秒前
chcmuer完成签到,获得积分10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176