A Systematic Literature Review of Genetic Algorithm-Based Approaches for Cloud Task Scheduling

计算机科学 云计算 工作流程 调度(生产过程) 分布式计算 元启发式 人工智能 数学优化 数据库 数学 操作系统
作者
Henning Titi Ciptaningtyas,Ary Mazharuddin Shiddiqi,Diana Purwitasari
标识
DOI:10.1109/icts58770.2023.10330885
摘要

Cloud computing offers a promising approach to efficiently distribute tasks and workflows among virtual resources. Optimal scheduling of these resources is crucial to maximize the efficiency of cloud environments. Various nature-inspired metaheuristic solutions have been suggested to tackle this challenge, focusing on Genetic Algorithm (GA)-based techniques. GA has the capability to effectively manage the intricate and ever-changing characteristics of cloud task scheduling, hence enhancing the allocation of resources in accordance with present requirements. In this study, we comprehensively analyze GA-based techniques for cloud task scheduling by performing a Systematic Literature Review (SLR). Our review involves selecting relevant studies from online electronic databases based on predefined research questions (RQs) and criteria. We narrowed the selection from 385 articles to a final set of 20 articles that provide valuable insights into our research inquiries and form the foundation of our analysis. We explore different aspects of the literature, such as its properties, benefits, drawbacks, datasets, simulation tools, performance evaluations, and function objectives. Based on this analysis, we propose a classification framework incorporating a modified and hybrid GA method for scheduling tasks and workflows. Furthermore, we outline future research directions in this field. The overall efficacy of GA-modified and GA-Hybrid algorithms is very commendable. However, it is crucial to consider the intricacy and the potential for being confined to local optima in order to get more optimal outcomes in task scheduling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫气东来完成签到,获得积分10
1秒前
Scinature发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
李健的小迷弟应助chenling采纳,获得10
3秒前
3秒前
walu发布了新的文献求助30
4秒前
4秒前
langkanpu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
devil发布了新的文献求助50
5秒前
5秒前
5秒前
jl发布了新的文献求助10
5秒前
6秒前
梁皓然发布了新的文献求助10
6秒前
甘振豪发布了新的文献求助10
6秒前
wuuToiiin完成签到,获得积分10
7秒前
杨一乐发布了新的文献求助50
7秒前
咖啡酸醋冰完成签到,获得积分10
7秒前
幽默的方盒完成签到,获得积分10
7秒前
7秒前
爆米花应助灵巧的山水采纳,获得10
8秒前
8秒前
iW发布了新的文献求助10
9秒前
lucky发布了新的文献求助10
9秒前
朴素访琴完成签到 ,获得积分10
9秒前
9秒前
longyuyan完成签到,获得积分10
10秒前
10秒前
10秒前
Rec完成签到 ,获得积分10
10秒前
虎啊虎啊发布了新的文献求助10
11秒前
周婷发布了新的文献求助10
11秒前
夜神月发布了新的文献求助10
11秒前
11秒前
11秒前
HCL发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836