Defect detection of the surface of wind turbine blades combining attention mechanism

人工智能 帧(网络) 计算机科学 特征(语言学) 模式识别(心理学) 帧速率 融合机制 工程类 计算机视觉 融合 电信 哲学 语言学 脂质双层融合
作者
Yuhang Liu,Yuqiao Zheng,Zhufeng Shao,Tai Wei,Tian-cai Cui,Rong Xu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:59: 102292-102292 被引量:13
标识
DOI:10.1016/j.aei.2023.102292
摘要

The proposed work introduces a novel, lightweight feature fusion network model based on the attention mechanism to address the issues of high time consumption and poor effectiveness in wind turbine blade surface defect detection. A bidirectional feature fusion network enhances the YOLOX network. The model employs an attention mechanism module to learn channel and spatial feature information. A classification loss function with an attenuation factor is designed to tackle the unbalanced distribution of learning weights for multiple samples in the blade surface defect detection task. Additionally, to mitigate recognition loss caused by target occlusion or overlap, the Soft-NMS method is utilized to eliminate redundant detection boxes. Sample imbalance is addressed by creating new samples using a geometric transformation-based multi-sample fusion data enhancement method and unsupervised learning MFF-GAN image editing techniques. A feature fusion network comparison test, classification loss function comparison test, and attention mechanism module position ablation test were completed using the blade surface defect dataset. The results indicate that the blade surface defect detection model incorporating the attention mechanism can effectively identify five types of defects with an average detection accuracy of mAP-0.5, achieving approximately 95.03 % and a detection frame rate of about 54.56 frame·s−1. Compared with the YOLOX-s network, YOLOv7-tiny network, and YOLOv8-s network, this model can improve the recognition rate and shorten the detection time, achieving high precision and rapid identification and localization of blade surface defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcx发布了新的文献求助10
1秒前
浅尝离白应助壮观曼凡采纳,获得10
1秒前
1秒前
瘦瘦芾发布了新的文献求助20
1秒前
1秒前
搜集达人应助灵巧代亦采纳,获得10
1秒前
leungya完成签到,获得积分10
2秒前
自由寻菱完成签到 ,获得积分10
2秒前
fei完成签到,获得积分20
3秒前
3秒前
3秒前
烟花应助小巫见大巫采纳,获得10
3秒前
baibai发布了新的文献求助10
3秒前
Zzz完成签到,获得积分10
5秒前
yinhe028发布了新的文献求助10
6秒前
CornellRong完成签到,获得积分10
6秒前
onfire完成签到,获得积分10
7秒前
啊倦发布了新的文献求助10
7秒前
英姑应助fei采纳,获得10
7秒前
炙热芷蕊完成签到,获得积分10
8秒前
9秒前
LaKers完成签到,获得积分10
9秒前
10秒前
11秒前
背后卿完成签到 ,获得积分10
12秒前
13秒前
sqrt138发布了新的文献求助10
13秒前
CJZ完成签到,获得积分10
13秒前
13秒前
赘婿应助zcx采纳,获得10
14秒前
14秒前
14秒前
浅尝离白应助壮观曼凡采纳,获得10
15秒前
15秒前
15秒前
建设完成签到 ,获得积分10
15秒前
ygr应助李剑鸿采纳,获得50
16秒前
Jasper应助yinhe028采纳,获得10
16秒前
16秒前
NexusExplorer应助LGuy采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144366
求助须知:如何正确求助?哪些是违规求助? 2795962
关于积分的说明 7817099
捐赠科研通 2452017
什么是DOI,文献DOI怎么找? 1304837
科研通“疑难数据库(出版商)”最低求助积分说明 627295
版权声明 601419