Defect detection of the surface of wind turbine blades combining attention mechanism

人工智能 帧(网络) 计算机科学 特征(语言学) 模式识别(心理学) 帧速率 融合机制 工程类 计算机视觉 融合 电信 哲学 语言学 脂质双层融合
作者
Yuhang Liu,Yuqiao Zheng,Zhufeng Shao,Tai Wei,Tian-cai Cui,Rong Xu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:59: 102292-102292 被引量:30
标识
DOI:10.1016/j.aei.2023.102292
摘要

The proposed work introduces a novel, lightweight feature fusion network model based on the attention mechanism to address the issues of high time consumption and poor effectiveness in wind turbine blade surface defect detection. A bidirectional feature fusion network enhances the YOLOX network. The model employs an attention mechanism module to learn channel and spatial feature information. A classification loss function with an attenuation factor is designed to tackle the unbalanced distribution of learning weights for multiple samples in the blade surface defect detection task. Additionally, to mitigate recognition loss caused by target occlusion or overlap, the Soft-NMS method is utilized to eliminate redundant detection boxes. Sample imbalance is addressed by creating new samples using a geometric transformation-based multi-sample fusion data enhancement method and unsupervised learning MFF-GAN image editing techniques. A feature fusion network comparison test, classification loss function comparison test, and attention mechanism module position ablation test were completed using the blade surface defect dataset. The results indicate that the blade surface defect detection model incorporating the attention mechanism can effectively identify five types of defects with an average detection accuracy of mAP-0.5, achieving approximately 95.03 % and a detection frame rate of about 54.56 frame·s−1. Compared with the YOLOX-s network, YOLOv7-tiny network, and YOLOv8-s network, this model can improve the recognition rate and shorten the detection time, achieving high precision and rapid identification and localization of blade surface defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
student发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
磕磕发布了新的文献求助10
6秒前
6秒前
ZoeyD完成签到 ,获得积分10
7秒前
Liudi发布了新的文献求助10
8秒前
李亚楠完成签到,获得积分10
9秒前
10秒前
淡淡诗柳发布了新的文献求助10
10秒前
12秒前
14秒前
huahua完成签到 ,获得积分10
17秒前
18秒前
19秒前
21秒前
SciGPT应助刘佳恬采纳,获得10
24秒前
weerfi完成签到,获得积分10
24秒前
化学位移值完成签到 ,获得积分10
24秒前
24秒前
26秒前
猪猪hero应助zhoujiayi采纳,获得10
28秒前
搜集达人应助内向代珊采纳,获得10
29秒前
俗子完成签到 ,获得积分10
30秒前
无情魂幽发布了新的文献求助10
31秒前
阿混发布了新的文献求助30
32秒前
量子星尘发布了新的文献求助100
35秒前
刘佳恬完成签到,获得积分10
35秒前
今天也要学习完成签到,获得积分10
36秒前
37秒前
天狗屯月完成签到,获得积分10
38秒前
科目三应助研友_ndka5L采纳,获得10
38秒前
久久阳光完成签到,获得积分10
38秒前
刘佳恬发布了新的文献求助10
40秒前
老板娘发布了新的文献求助10
40秒前
mjf111发布了新的文献求助10
40秒前
42秒前
幼稚完成签到,获得积分10
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110282
捐赠科研通 3233774
什么是DOI,文献DOI怎么找? 1787498
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172