Defect detection of the surface of wind turbine blades combining attention mechanism

人工智能 帧(网络) 计算机科学 特征(语言学) 模式识别(心理学) 帧速率 融合机制 工程类 计算机视觉 融合 语言学 电信 脂质双层融合 哲学
作者
Yuhang Liu,Yuqiao Zheng,Zhufeng Shao,Tai Wei,Tian-cai Cui,Rong Xu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:59: 102292-102292 被引量:16
标识
DOI:10.1016/j.aei.2023.102292
摘要

The proposed work introduces a novel, lightweight feature fusion network model based on the attention mechanism to address the issues of high time consumption and poor effectiveness in wind turbine blade surface defect detection. A bidirectional feature fusion network enhances the YOLOX network. The model employs an attention mechanism module to learn channel and spatial feature information. A classification loss function with an attenuation factor is designed to tackle the unbalanced distribution of learning weights for multiple samples in the blade surface defect detection task. Additionally, to mitigate recognition loss caused by target occlusion or overlap, the Soft-NMS method is utilized to eliminate redundant detection boxes. Sample imbalance is addressed by creating new samples using a geometric transformation-based multi-sample fusion data enhancement method and unsupervised learning MFF-GAN image editing techniques. A feature fusion network comparison test, classification loss function comparison test, and attention mechanism module position ablation test were completed using the blade surface defect dataset. The results indicate that the blade surface defect detection model incorporating the attention mechanism can effectively identify five types of defects with an average detection accuracy of mAP-0.5, achieving approximately 95.03 % and a detection frame rate of about 54.56 frame·s−1. Compared with the YOLOX-s network, YOLOv7-tiny network, and YOLOv8-s network, this model can improve the recognition rate and shorten the detection time, achieving high precision and rapid identification and localization of blade surface defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适沛儿完成签到,获得积分10
1秒前
FashionBoy应助hihi采纳,获得10
1秒前
无际完成签到,获得积分20
2秒前
缥缈的寒烟完成签到,获得积分10
2秒前
SciGPT应助lee采纳,获得10
3秒前
独特的易形完成签到,获得积分10
3秒前
孤独念柏完成签到,获得积分10
5秒前
111111完成签到,获得积分10
5秒前
kkem完成签到 ,获得积分10
7秒前
闪闪晓绿完成签到,获得积分10
7秒前
FBI汪宁完成签到,获得积分10
7秒前
Orange应助飞哥采纳,获得10
7秒前
8秒前
8秒前
小蘑菇应助norman采纳,获得10
9秒前
Yan Chen发布了新的文献求助10
9秒前
Debrolie完成签到,获得积分10
11秒前
11秒前
12秒前
zzx发布了新的文献求助10
12秒前
chloe完成签到,获得积分10
13秒前
14秒前
浩劫发布了新的文献求助10
15秒前
天天快乐应助纯情的天奇采纳,获得10
15秒前
解海龙发布了新的文献求助10
15秒前
我就是我发布了新的文献求助10
16秒前
norman完成签到,获得积分20
16秒前
sjh发布了新的文献求助10
16秒前
爆米花应助redtom采纳,获得10
17秒前
18秒前
Lucas应助Lee采纳,获得10
18秒前
19秒前
19秒前
酷波er应助浩劫采纳,获得10
22秒前
suibiao发布了新的文献求助10
24秒前
爱吃鱼的猫完成签到,获得积分10
24秒前
神勇化蛹完成签到,获得积分20
24秒前
yuuan发布了新的文献求助10
24秒前
25秒前
无辜的夏山完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734713
求助须知:如何正确求助?哪些是违规求助? 3278694
关于积分的说明 10010586
捐赠科研通 2995337
什么是DOI,文献DOI怎么找? 1643307
邀请新用户注册赠送积分活动 781114
科研通“疑难数据库(出版商)”最低求助积分说明 749249