Photocatalytic fuel cell assisted by Fenton-like reaction for p-Chloronitrobenzen degradation and electricity production through S-scheme heterojunction C3N5 modified TNAs photoanode: Performance, DFT calculation and mechanism

降级(电信) 光化学 异质结 光催化 化学工程 化学 污染物 激进的 材料科学 催化作用 光电子学 有机化学 计算机科学 电信 工程类
作者
Wenjie Liu,Xingchen Liu,Shuaishuai Xin,Yanhao Wang,Siyue Huo,Wenxian Fu,Quanyou Zhao,Mengchun Gao,Haijiao Xie
出处
期刊:Applied Energy [Elsevier]
卷期号:358: 122552-122552 被引量:3
标识
DOI:10.1016/j.apenergy.2023.122552
摘要

Photocatalytic fuel cell (PFC) is a promising technology to recover usable energy from wastewater through the degradation of pollutants, whereas the complex preparation procedures and high photogenerated carrier recombination efficiency of photoanode remains an urgent challenge to improve the PFC performance. Herein, PFC with S-scheme heterojunction C3N5/TNAs photoanode assisted by Fenton-like reaction (C3N5/TNAs-PFC-Fenton) system was built for p-Chloronitrobenzene degradation and electricity production. The working function confirmed the band bending of C3N5 and TNAs, and density functional theory calculations indicated the formation of internal electric field at heterojunction interface of C3N5 and TNAs, which promoted visible-light absorption capacity and charge transfer property of C3N5/TNAs photoanode. The incorporation of Fenton-like reaction into C3N5/TNAs-PFC-Fenton system could effectively enhance p-Chloronitrobenzene degradation and electricity production by participating in free radical chain reaction and stimulating electron transfer. The radical trapping experiments confirmed that •OH and photogenerated electron were main reactive species, and photogenerated hole, •O2− and 1O2 were also participated in p-Chloronitrobenzene degradation. The p-Chloronitrobenzene degradation pathway was interpreted and the overall toxicity of p-Chloronitrobenzene was relieved after treatment in C3N5/TNAs-PFC-Fenton system. The C3N5/TNAs-PFC-Fenton system exhibited fine universality for degradation of organic pollutants and electricity production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
劼大大完成签到,获得积分10
刚刚
最优解完成签到 ,获得积分20
1秒前
1秒前
通~发布了新的文献求助10
1秒前
一段乐多完成签到,获得积分10
2秒前
2秒前
2秒前
给我找完成签到,获得积分10
3秒前
桐桐应助Yuki0616采纳,获得10
3秒前
小马甲应助鸣隐采纳,获得10
3秒前
ycd完成签到,获得积分10
4秒前
ark861023完成签到,获得积分10
4秒前
淡定问芙完成签到,获得积分10
4秒前
斯文败类应助惠惠采纳,获得10
5秒前
5秒前
Meowly完成签到,获得积分10
5秒前
6秒前
6秒前
陶醉觅夏发布了新的文献求助10
6秒前
pu完成签到,获得积分10
6秒前
小灵通完成签到,获得积分10
6秒前
给我找发布了新的文献求助10
6秒前
科研通AI2S应助LIn采纳,获得10
7秒前
gaga完成签到,获得积分10
7秒前
_Charmo完成签到,获得积分10
7秒前
Slemon完成签到,获得积分10
7秒前
谦谦姜完成签到,获得积分10
9秒前
10秒前
JINGZHANG发布了新的文献求助10
10秒前
10秒前
归海天与应助糊弄学专家采纳,获得10
10秒前
风中的青完成签到,获得积分10
11秒前
11秒前
11秒前
duxinyue关注了科研通微信公众号
12秒前
超级宇宙二踢脚关注了科研通微信公众号
12秒前
13秒前
13秒前
14秒前
务实盼海发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794