材料科学
光热治疗
检出限
免疫分析
双模
色谱法
纳米技术
航空航天工程
化学
生物
免疫学
抗体
工程类
作者
Meimei Xu,Shuai Zhao,Chenglong Lin,Yanyan Li,Weida Zhang,Yusi Peng,Rui Xiao,Zengqi Huang,Yong Yang
标识
DOI:10.1021/acsami.3c15851
摘要
Lateral flow immunoassay (LFIA) has been widely used for the early diagnosis of diseases. However, conventional colorimetric LFIA possesses limited sensitivity, and the single-mode readout signal is easily affected by the external environment, leading to insufficient accuracy. Herein, multifunctional Fe3O4@MoS2@Pt nanotags with a unique "pompon mum"-like structure were triumphantly prepared, exhibiting excellent peroxidase (POD)-like activity, photothermal properties, and magnetic separation capability. Furthermore, the Fe3O4@MoS2@Pt nanotags were used to establish dual-mode LFIA (dLFIA) for the first time, enabling the catalytic colorimetric and photothermal dual-mode detection of severe acute respiratory syndrome coronavirus 2 nucleocapsid protein (SARS-CoV-2 NP) and influenza A (H1N1). The calculated limits of detection (cLODs) of SARS-CoV-2 NP and H1N1 were 80 and 20 ng/mL in catalytic colorimetric mode and 10 and 8 ng/mL in photothermal mode, respectively, demonstrating about 100 times more sensitive than the commercial colloidal Au-LFIA strips (1 ng/mL for SARS-CoV-2 NP; 1 μg/mL for H1N1). The recovery rates of dLFIA in simulated nose swab samples were 95.2–103.8% with a coefficient of variance of 2.3–10.1%. These results indicated that the proposed dLFIA platform showed great potential for the rapid diagnosis of respiratory viruses.
科研通智能强力驱动
Strongly Powered by AbleSci AI